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Abstract 
 

Quantitative measurement of MRI image quality is a difficult, but important problem 

that can have direct and indirect benefits to MRI research. Objective image quality metrics 

(IQMs), such as root-mean-squared-error (RMSE) and structural similarity (SSIM), are 

routinely employed in a research context to evaluate MRI image quality. Here, work is 

presented that investigates the efficacy of 10 common IQMs including RMSE and SSIM 

at measuring MRI image quality as perceived by radiologists. While some metrics 

demonstrated high correlation with the radiologists’ scores, RMSE and SSIM were not 

among the top performing metrics. SSIM did not perform statistically superior to RMSE. 

In a second study, an IQM-based heuristic is developed to determine an optimal temporal 

footprint in dynamic-contrast-enhanced (DCE) MRI for pharmacokinetic parameter 

measurement, specifically the volume transfer constant 𝐾𝑡𝑟𝑎𝑛𝑠. In simulations, the 

heuristic was able to consistently recover 𝐾𝑡𝑟𝑎𝑛𝑠 within 10%. This technique may allow 

for selection of temporal footprint in DCE MRI at an individual level.  
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Chapter 1: Introduction 
 

1.1 Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a sophisticated diagnostic imaging technique 

used in modern medicine. MR images are generated from the signal detected from the 

magnetic moment of an atomic nucleus. In diagnostic MRI, this nucleus of choice is the 

single proton nucleus of the hydrogen atom found primarily in water and fat. Due to the 

large water content in soft tissue, MRI is particularly advantageous for imaging of soft 

tissues such as brain, breast, and other organs in the abdomen. Another advantage of MRI 

over other medical imaging techniques such as X-ray, computed tomography, or positron 

emission tomography is that it does not use ionizing radiation. MRI is also unique among 

medical imaging technologies in that it uses radiation of a wavelength that is much larger 

than the resolution of the resulting image. This can be accomplished because the raw data 

collected for an MR image are not directly sensed in the image domain, but in the spatial 

frequency/Fourier domain. Fourier components are discretely sampled and an image is then 

generated by inverse Fourier transform or other advanced reconstruction techniques.  

Unfortunately, this discrete sampling of Fourier components is a time-consuming process, 

resulting in long MRI scan times.  

A common source of image contrast in MRI is the different relaxation rates of the 

hydrogen nucleus in different tissues. Properties such as tissue density, phase, and chemical 

composition will affect the rate at which the local signal decays resulting in different local 

signal intensity. It was the apparent difference in relaxation rates between tumors and 

healthy tissues that originally motivated the use of MRI as a diagnostic tool [1]. Since this 

time, MRI has evolved to be more than just a device for anatomical imaging. Functional 
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MRI (fMRI) can measure neural activity based on difference of blood flow in different 

areas [2]. Diffusion weighted imaging (DWI) can generate maps of the apparent diffusion 

coefficient of water within a tissue [3]. Magnetic resonance spectroscopy is a technique 

that provides information about the presence of metabolites in a tissue [4]. Of particular 

importance to this thesis is a technique called dynamic contrast enhanced (DCE) MRI [5], 

in which image contrast is affected by the permeability and perfusion in the 

microvasculature of a tissue after the intravenous injection of a contrast agent. 

1.2 Dynamic Contrast Enhanced MRI 

DCE MRI is a dynamic imaging technique, which means that a series of images of the 

same anatomical region are collected sequentially over a period of time, typically between 

five to ten minutes.  DCE MRI seeks to track the kinetics of a contrast agent as is passes 

through the circulatory system and tissues.  During a clinical scan, the contrast agent is 

injected intravenously and travels through the blood stream. The contrast agent can also 

escape from blood vessels into the extravascular extracellular tissue space, so the local 

contrast agent concentration will depend both on local blood perfusion and blood vessel 

permeability [5]. The contrast agent is usually gadolinium based, which is a paramagnetic 

material. This alters local relaxation rates leading to local signal enhancement. DCE MRI 

scans can be used in many locations in the body such as the brain [6], heart [7], breast [8],  

kidney [9], and prostate [5]. In the prostate, it is useful for detecting subtle lesions. 

However, due to significant overlap of behavior between healthy and cancerous tissue it 

can only be used for diagnosis if the suspicious region shows abnormality in the 

corresponding T2 weighted images or DWI scan [10]. 

Cancerous tissues can display earlier enhancement in DCE scans than healthy tissue, so 
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a radiologist can scroll through the image time series and look for areas of early local 

enhancement. This visual assessment can be complemented by semi-quantitative and 

quantitative information by extracting parameters from the signal enhancement curve in a 

pixel or region of interest. Semi-quantitative parameters include parameters such as the 

slope, time-to-peak, or the area under the signal enhancement curve (Figure 1.1). While the 

relative values of these parameters can be useful, the absolute values are meaningless due 

to sensitivities to imaging site dependent features such as magnetic field strength, imaging 

protocol, or amount of contrast agent injected [11]. These sensitivities can cause difficulties 

with semi-quantitative parameters when trying to determine a diagnostic threshold or when 

comparing the progress of a disease in a patient over time. Quantitative DCE parameters 

define physiologically meaningful tissue properties that should be independent of these 

features by using an appropriate pharmacokinetic (PK) model. Common PK parameters 

include the volume transfer constant, 𝐾𝑡𝑟𝑎𝑛𝑠, the percent volume of extravascular 

extracellular space, 𝑣𝑒, and the percent volume of blood plasma, 𝑣𝑝. Studies have shown 

 

Figure 1.1: Time courses of contrast agent concentration (derived from signal enhancement 

curve) in tissues showing representative behaviour for cancerous and healthy tissues. Semi-

quantitative parameters are also shown. 
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that these parameters have the potential to serve as biomarkers to differentiate between 

healthy and cancerous tissues [8, 12, 13] as well as track therapy progression [14, 15], but 

to date there is still too much variability in their measurements to warrant widespread 

clinical adoption [16]. A precise and accurate technique for measurement of these PK 

parameters could be clinically beneficial. 

One of the fundamental difficulties in DCE MRI is the trade-off between temporal 

resolution (i.e. the time between each image of the time series) and the quality of the 

images. Collecting more data for each image will result in higher image quality, but at the 

expense of temporal resolution. This trade-off can result in loss of the visualization of the 

early enhancement of a tumor or inaccurate PK parameter mapping. Golden angle-based 

radial imaging techniques such as GRASP [17] allow for multiple reconstructions with 

arbitrary temporal resolution chosen retrospectively, but a technique for making the choice 

of temporal resolution still does not exist. Faster imaging techniques may help mitigate this 

problem. Recent advances in MR imaging speeds via techniques such as parallel imaging, 

compressed sensing, and machine learning are helping to generate high image quality DCE 

scans with higher temporal resolution. 

1.3 Accelerated MR Imaging 

MRI has always suffered from slow imaging speeds. Early research looked at ways of 

increasing the speed of data collection. This included techniques such as stronger magnetic 

field gradients/faster slew rates and more advanced pulse sequences. However, there are 

physical, physiological, and engineering limitations to this kind of approach. For instance, 

magnetic relaxation rates limit sequence repetition times, tissue specific absorption rate 

and peripheral nerve stimulation limits the strength of magnetic fields and gradient fields, 
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and imaging pulse sequences can only be made so efficient. This fundamentally limits the 

possible sampling speed of MRI. Due to these limitations much focus has been placed on 

advanced image reconstruction techniques that can generate high quality images with less 

data. It is common practice to sample only a subset of the available Fourier components of 

the MR image, a technique known as undersampling, resulting in scan time acceleration. 

However, this can violate the Nyquist criteria, which will lead to aliasing and a degradation 

in image quality.  Many modern approaches then take advantage of the enforced and/or 

inherent redundancy in MRI data to attempt to de-alias the undersampled image. 

An acceleration technique that takes advantage of enforced data redundancy is parallel 

imaging (PI). PI makes use of multiple receiver coils and the inherent spatial sensitivities 

of each coil to localize the MR signal. In this approach, each coil collects undersampled 

data in parallel resulting in an aliased image for each coil. Each coil detects a signal from 

the same image, but due to the different spatial locations of the coils they will exhibit 

different spatial sensitivities to the signal of the image. By exploiting the differing coil 

sensitivities, the multiple aliased images, and using advanced reconstruction algorithms 

(i.e. more than just a Fourier transform), it is possible to recover an unaliased image. These 

approaches can take place in the image domain [18] or in the Fourier-space domain [19]. 

In theory, PI can achieve an undersampling factor as high as the number of coils used in 

the scan [18], but in practice undersampling rarely goes past a factor of two.  

An approach that utilizes the inherent redundancy of MRI data is compressed sensing 

(CS) [20]. CS MRI exploits the sparsity exhibited in MR images to recover high quality 

images from an undersampled set of data. Here, sparsity means that in some transform 

domain, the majority of the signal will be contained in a relatively small number of 
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components, meaning that in this transform domain a few components will have a high 

intensity and the majority will be zero or close to zero (Figure 1.2). CS requires 

pseudorandom sampling of the raw MR data (see Section 2.1.3). This type of sampling 

results in noise-like aliasing artifacts from which the sparse components can be separated 

 

Figure 1.2: Examples of sparsity in different domains. (Top) Sparsity in the image domain 

(identity transform, I). (Middle) Sparsity in the wavelet domain (wavelet transform, W). 

(Bottom) Sparsity in the total variation domain (total variation transform, TV). 

 



7 

 

to recover an un-aliased image. CS can achieve undersampling factors up to an order of 

about 10 in a research setting [21], however undersampling factors would likely be much 

lower in a clinical setting. PI and CS can also be used simultaneously to achieve even faster 

imaging speeds [22]. 

In recent years, increased computing power and improved algorithms have allowed for 

the adoption of advanced machine learning based reconstruction algorithms [23]. For MRI, 

it is common to think of machine learning on the diagnostic side of the imaging workflow 

(e.g. detecting a tumor), but machine learning can also be a powerful tool for image 

reconstruction. Some machine learning approaches learn patterns or features common in 

MR images from a previous data set and use this information to prospectively reconstruct 

images. In a sense, this is similar to how CS works as CS leverages the prior knowledge 

that the reconstructed image is sparse in some transform domain. Since the machine 

learning approaches are less restricted in what prior information it uses, there is possibility 

for further acceleration of the MR scan [25-28]. Common approaches for development of 

machine learning techniques typically involve learning to de-alias an undersampled image 

by training a neural network on a set of fully sampled and retrospectively undersampled 

data [29-31]. Machine learning has even been used to estimate PK parameters maps 

directly from k-space [30]. One of the advantages of machine learning approaches is the 

short image reconstruction time compared to iterative approaches like CS. It is possible to 

reconstruct images of a similar or better quality than conventional approaches but within a 

fraction of the reconstruction time [31]. 

All the accelerated imaging techniques add much value to MRI, especially for dynamic 

imaging techniques such as DCE. However, the goal of MR research is not just to have fast 



8 

 

imaging techniques. The techniques must also maintain the high quality required for 

diagnosis. Therefore, it is imperative that image quality be closely monitored as these 

techniques develop. 

1.4 Image Quality in MRI 

The purpose of an MR image is to convey diagnostic information to a doctor, typically 

a radiologist. In many cases, diagnostic information means the visual presence or absence 

of an abnormality such as a lesion or hemorrhage. The quality of the MR image is then 

equivalent to the ability of the image to convey this information. For example, if the image 

is very noisy, a radiologist would not be able to say whether a lesion is present or absent, 

so the image is of low quality. Over the course of their extensive training and practice, 

radiologists learn what features of the image will best allow it to be used for diagnosis. 

These are features such as signal to noise ratio (SNR), sharpness, or imaging artifacts, for 

example. This knowledge can cause radiologists to have differing opinions of image quality 

compared to a non-expert [32] who may consider image quality only in the abstract, as they 

would consider the quality of a natural image, for example. With this in consideration there 

are numerous ways to quantify image quality. Since MR images are acquired for diagnosis 

the gold-standard would be a task-based measure such as a visibility rating of a 

lesion/anatomical feature or diagnostic accuracy when a particular degradation is applied. 

This approach can be difficult to implement in practice due to variation in lesion visibility, 

so radiologists rating of overall image quality is widely accepted as a surrogate.  

However, this too can be difficult to implement in practice on a large-scale due to time 

limitations or concerns of inter/intra-rater reliability issues. The subjective nature of 

scoring by radiologists also makes it difficult to quantitatively compare results between 
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studies. This encourages the use of alternative techniques, such as objective image quality 

metrics (IQMs), that can provide a consistent measure of image quality [33] in a rapid and 

automatic manner. Objective IQMs can broadly be broken into three categories based on 

the availability of a gold-standard reference image [34]. The three categories are: 

1. Full-reference IQMs: a reference is known and the score for the IQM is 

calculated from the similarity between the test image and the reference image. 

2. Reduced-reference IQMs: a reference is partially known and a score is 

calculated from what information is known and the test image. 

3. No-reference IQMs: no reference is known, so the score is calculated solely 

from the test image. 

Many MR imaging studies adopt the framework of retrospectively undersampling or 

adding artifacts to a known image and attempt to recover a high-quality image. Since a 

reference image is known, full-reference IQMs are commonly used and so will be the focus 

of this thesis. Common full-reference IQMs include the root mean squared error (RMSE), 

peak signal to noise ratio (PSNR), and the structural similarity index (SSIM) [34]. 

There have been some recent advances with the use of machine learning techniques for 

the assessment of image quality. Most of these approaches are designed with a binary 

output either for artifact detection [35,36] or to classify an image as diagnostic/non-

diagnostic [37,38]. These approaches could be useful for on-the-fly assessment of scan 

quality during a clinical scan as they could catch non-diagnostic scans before the patient 

leaves thus reducing patient recall. For assessing new imaging techniques, a scale with a 

varying degree of scores is more useful as it could measure superior diagnostic quality for 

a new imaging technique compared to an existing technique. A study by Kustner et al. used 
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a deep neural network to achieve a 93.7% accuracy for scoring image quality on a 1-5 scale 

as determined by a radiologist [38]. Despite this progress there remains no widespread 

consensus for using a particular machine learning based technique for assessing image 

quality. For this, IQMs continue to play a large role, thus motivating the need for their 

continued study. 

When considering these non-radiologist methods to measure image quality it is 

important to remember how image quality was originally defined in this thesis. Image 

quality is defined by a radiologist’s opinion in relation to how well the image can be used 

for diagnosis. Most objective IQMs were calculated to correlate with the opinions of non-

experts on natural images so there is no guarantee of their performance for medical images 

in a clinical setting. This highlights an important gap of knowledge in the literature. 

1.5 Contributions of this Thesis 

This thesis examines how to quantify MR image quality and explores how these 

quantitative measures can be used in MRI techniques, specifically DCE MRI. The results 

focus on MR image reconstruction. This thesis is composed of two independent studies 

that are broken into their own chapters. The first study examines the problem of 

determining which objective IQMs have the highest correlation with radiologists’ opinions 

of image quality. This is an important problem to study because IQMs such as RMSE and 

SSIM are commonly used to measure image quality in MRI studies, however they have 

never been validated as an accurate measure of MR image quality. In this study, the 

correlation between these IQMs and radiologists' rating of image quality is calculated along 

with other common IQMs. We hypothesize that RMSE and SSIM will not demonstrate the 

highest correlations with the radiologists’ rating of image quality. This is motivated by the 
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more sophisticated algorithms of other IQMs and the results from natural-image studies. 

The results of this thesis may serve as a valuable reference when choosing an IQM in future 

MR image acquisition and reconstruction studies. 

The second study applies IQMs to DCE MRI reconstruction with the goal of accurate 

PK parameter measurement. We hypothesize IQMs can be used to determine a balance 

between temporal resolution and image quality in DCE MRI to maximize PK parameter 

measurement accuracy. This is based on the results of previous studies that found a 

correlation between IQM scores and accuracy of model parameters in DCE MRI 

simulations [39] and further development in golden angle based sampling techniques [17]. 

In this study, a technique for PK modelling based on the IQM score of the reconstructed 

images is presented. In a clinical setting, this technique would allow for patient-specific 

optimization of temporal resolution in DCE MRI. 

The thesis is outlined as follows. The theory and technical background of methods used 

throughout the two studies are presented in Chapter 2. The full details of the two studies 

are presented in Chapters 3 and 4 respectively. These chapters are relatively free-standing, 

and each contain their own Motivation, Methods, Results, Discussions, and Conclusions 

sections. Finally, Chapter 5 provides a summary and conclusions of the thesis. 
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Chapter 2: Theory and Techniques 

2.1 MRI Data Acquisition 

2.1.1 MRI Physics  

The source of the MRI signal is the proton found in the nucleus of hydrogen atoms, 

which are predominantly found in water and fat in the body. External magnetic fields are 

used to manipulate the states of these protons to encode spatial information in the resulting 

signal that gives rise to the image. Fundamentally this is a quantum mechanical 

phenomenon, but given the large number of hydrogen atoms in a human body we may 

adapt a classical interpretation. Protons are a spin-1/2 particle and so possess a magnetic 

moment 𝜇 . Under normal conditions the spins of the protons in the body are randomly 

aligned and the net magnetization is zero. However, when placed in a strong magnetic field, 

such as an MRI machine, the spins will align resulting in a non-zero net magnetization  �⃗⃗�  

that is parallel to the applied magnetic field: 

�⃗⃗� =
1

𝑉
∑𝜇 𝑖

𝑖

, (2. 1) 

where 𝑉 is the volume containing the 𝑖 magnetic moments.  

It is conventional to define the 𝑧-axis as parallel to the main magnetic field �⃗� 0, such 

that   �⃗� 0 = 𝐵0�̂�. The initial magnetization at a point 𝑟  is then �⃗⃗� (𝑟 , 𝑡 = 0) = 𝑀0(𝑟 )�̂�, where 

𝑀0(𝑟 ) is the magnitude of the net magnetization at this location. This magnitude depends 

on factors such as the local proton density, temperature, and magnetic field strength. An 
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arbitrary external magnetic field, �⃗� , will induce a torque on the magnetization. This 

provides the 3D equations of motion for �⃗⃗�  known as the Bloch equations: 

𝑑�⃗⃗� 

𝑑𝑡
= 𝛾�⃗⃗� × �⃗� , (2. 2) 

where 𝛾 is the gyromagnetic ratio (42.6 MHz/T for a proton). 

During the scan, the net magnetization along the 𝑧-axis is much less than the �⃗� 0 field 

and so is impossible to detect. For a signal to be detected, �⃗⃗�  must be tipped into the 

transverse 𝑥, 𝑦-plane where the transverse components can be detected. This is 

accomplished by a short radiofrequency (RF) pulse along the 𝑥 or 𝑦 directions that induces 

a torque that rotates �⃗⃗�  into the transverse plane. This is also referred to as excitation due 

to the equivalent phenomenon in the quantum mechanical interpretation. After the RF 

pulse, all magnetic fields are along the �̂� direction. Due to the symmetry in the 𝑥, 𝑦-plane, 

it is convenient to combine the 𝑥 and 𝑦 components of �⃗⃗� , 𝑀𝑥 and 𝑀𝑦, into a single 

transverse component: 

𝑀𝑥𝑦 = 𝑀𝑥 + 𝑖𝑀𝑦, (2. 3) 

After �⃗⃗�  is disturbed from equilibrium it will begin to precess about the applied magnetic 

field, similar to a gyroscope. While this occurs, thermal relaxation will also affect �⃗⃗� . The 

𝑧-component of �⃗⃗�  will relax to its equilibrium value 𝑀0 according to a relaxation time 

constant 𝑇1. The transverse components will decay independently due to loss of phase 

coherence of the underlying magnetic moments due to local field fluctuations. This decay 

occurs with a relaxation time constant 𝑇2. Including these effects, equation 2.2 becomes: 
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𝑑�⃗⃗� 

𝑑𝑡
= 𝛾�⃗⃗� × �⃗� +

𝑀0 − 𝑀𝑧

𝑇1
�̂� −

(𝑀𝑥�̂� + 𝑀𝑦�̂�)

𝑇2
, (2. 4) 

where �⃗� = 𝐵(𝑟 )�̂�.  

Without loss of generality we can define the initial conditions after RF pulse excitation 

as: 

𝑀𝑧(𝑟, 0) = 𝑀0(𝑟 ) cos(𝛼) , (2. 5) 

𝑀𝑥𝑦(𝑟 , 0) = 𝑀0(𝑟 ) sin(𝛼) , (2. 6) 

where 𝛼 is how far from the 𝑧-axis �⃗⃗�  is tipped, known as the flip angle. The coupled first 

order different in equations of 2.3 can then be solved to find the equations of motion for 

�⃗⃗� :  

𝑀𝑧(𝑟 , 𝑡) = 𝑀0(𝑟 ) (1 − exp (−
𝑡

𝑇1(𝑟 )
)) + 𝑀𝑧(𝑟 , 0) exp (−

𝑡

𝑇1(𝑟 )
) , (2. 7) 

𝑀𝑥𝑦(𝑟 , 𝑡) = 𝑀𝑥𝑦(𝑟 , 0) exp (
−𝑡

𝑇2(𝑟 )
) exp(−𝑖𝜔(𝑟 )𝑡) , (2. 8) 

where 𝜔(𝑟 ) = 𝛾𝐵(𝑟 ) is the Larmor frequency of the magnetic moments in the �⃗� -field. 

This relationship between magnetic field strength and Larmor frequency is foundational to 

MR imaging. When a spin is placed within the main �⃗� 0-field, its Larmor frequency is 

typically denoted as: 𝜔0 = 𝛾𝐵0.  

The main �⃗� 0 field can be modified by adding additional linear gradient fields, 𝐺 (𝑟 ). The 

gradient can lie along any direction, but the field is always along the 𝑧-axis. For example, 

a linear gradient along the 𝑥-axis would result in the field: 

�⃗� (𝑥) = (𝐵0 + 𝐺𝑥𝑥)�̂�, (2. 9) 
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where 𝐺𝑥 is the strength of the gradient in units of mT/m. The resulting local precessional 

frequency would be (returning to 3D): 

𝜔 = 𝛾(𝐵0 + 𝑟  ⋅ 𝐺 ) = 𝜔0 + 𝛾𝑟 ⋅ 𝐺 . (2. 10) 

At this point it is convenient to adopt a rotating frame coordinate system. In this system 

the transverse plane rotates about the 𝑧-axis at 𝜔0. The result of this is that all spins rotating 

at this frequency will appear stationary and the gradient field only will be what determines 

the precessional frequency of the spin: 

𝜔 = 𝛾𝑟 ⋅ 𝐺 (2. 11) 

The effect of a spatially varying gradient field is that phase 𝜙 will accrue in spins based 

on the local gradient field strength: 

𝜙(𝑟, 𝑡) = ∫ 𝜔(𝑡′)𝑑𝑡′ = 𝛾 ∫ 𝑟 ⋅ 𝐺 (𝑡′)𝑑𝑡′ = 𝛾𝑡𝑟 ⋅ 𝐺 ,
𝑡

0

𝑡

0

(2. 12) 

for a time independent gradient 𝐺 . 

The accumulation of phase is crucial to the acquisition of the MRI signal. By carefully 

controlling the amount of phase with the gradient field strength and duration, we can 

encode spatial variations in the local magnetization that are either in or out of phase with 

the spatial distribution of spins in the patient being scanned. This will allow us to detect a 

signal that will provide spatial information about the underlying anatomy. 

2.1.2 Signal Detection and K-space 

As discussed above, the signal is detected from the transverse magnetization, 𝑀𝑥𝑦. 

Specifically, as seen in equation 2.8, the transverse magnetization rotates in the transverse 
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plane about the 𝑧-axis. This results in a changing magnetic field which induces current in 

the nearby receiver coils according to Faraday’s Law. Since the resulting current is 

proportional to the derivative of the magnetic flux in the coil, the signal detected from 

location 𝑟  will be proportional to the magnitude of the transverse magnetization and the 

Larmor frequency: 

𝑠𝑟 (𝑡) ∝ 𝜔0|𝑀𝑥𝑦(𝑟 , 𝑡)|. (2. 13) 

where the subscript 𝑟  indicates that 𝑠 originates from point 𝑟 . 

The total signal is the vector sum of contribution of the signal from the transverse 

magnetization at all points in the volume being imaged. Combining equations 2.8 and 2.13 

and integrating, we find the following 3D signal equation: 

𝑠(𝑡) = 𝜂𝜔0 ∫𝑀𝑥𝑦(𝑟 , 0)e
−

t
T2(𝑟 )e−𝑖𝜙(𝑟 ,𝑡)𝑑𝑟 , (2. 14) 

where 𝜂 is the constant of proportionality that incorporates information such as coil 

sensitivity and electronic gain. This equation can be simplified by first ignoring the effects 

of 𝑇2 relaxation. This is true if the sampling time 𝑡 ≪ 𝑇2. Second, the terms 𝜂, 𝜔0, and 

𝑀𝑥𝑦(𝑟 , 0) are combined into an effective proton density term, 𝜌(𝑟 ). This gives the 

equation: 

𝑠(𝑡) = ∫𝜌(𝑟 )e−𝑖𝜙(𝑟 ,𝑡)𝑑𝑟 . (2. 15) 

We can further simplify this equation by defining: 

�⃗� (𝑡) =
𝛾

2𝜋
∫ 𝐺 (𝑡′)𝑑𝑡′

𝑡

0

, (2. 16) 
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such that equation 2.12 becomes: 

𝜙(𝑟 , 𝑡) = 2𝜋𝑟 ⋅ �⃗� (𝑡). (2. 17) 

Finally, we can then write equation 2.15 as: 

𝑠(�⃗� ) = ∫𝜌(𝑟 )e−2𝜋𝑖𝑟 ⋅�⃗� 𝑑𝑟 . (2. 18) 

This is the imaging equation for MRI and it demonstrates that the acquired signal 𝑠(�⃗� ) is 

the Fourier transform of the effective proton density 𝜌(𝑟 ), which is the target image. So, 

in order to recover the image 𝜌(𝑟 ), one must simply collect 𝑠(�⃗� ) and then take the inverse 

Fourier transformation: 

𝜌(𝑟 ) =  ∫ 𝑠(�⃗� )e2𝜋𝑖𝑟 ⋅�⃗� 𝑑�⃗� . (2. 19) 

The space containing all the vectors �⃗�  is called k-space. The vector �⃗�  is the spatial 

frequency vector and has units of inverse length. This means 𝑠(�⃗� ) is a measure of the  

“amount” of the spatial frequency vector �⃗�  in the image 𝜌(𝑟 ). From equation 2.16, we can 

see that the location of the point in k-space that we are sampling at time 𝑡 is controlled by 

the area under the gradient curve. For a constant gradient magnitude, this is thus the product 

of the gradient magnitude and the time for which it is applied. The spatial frequency is 

encoded into the signal by the phase that is accumulated from the gradient. This can be 

visualized by the example shown in Figure 2.1. When the spatial frequency of �⃗�  constitutes 

a significant component of 𝜌(𝑟 ) the signal 𝑠(�⃗� ) will be large. Otherwise, the signal will be 

smaller. The signal near the centre of k-space will contain information about the low spatial 
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frequencies contained in the image. This provides details about the overall image contrast 

and larger features in the image. The periphery of k-space contains the higher spatial 

frequencies in the image, which provides information about edges and fine details. As can 

be seen in Figure 2.2, much of the energy in k-space is concentrated near the center in the 

low spatial frequencies. Thus, when sampling k-space, it is important that the central 

components be prioritized over the components in the periphery. 

So far, 𝑟  and �⃗�  have been treated as continuous variables. However, in practice an MRI 

image is a discrete array of pixels and k-space can only be sampled in non-zero intervals. 

Thus, k-space is also a discrete array. So, the collection of MRI data is equivalent to 

traversing through k-space by controlling the area under the gradient curve (Figure 2.2). 

To represent the discrete Fourier transform between the image and k-space, let us assume 

a 3D image of dimensions 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧. with resolution Δ𝑥 × Δ𝑦 × Δ𝑧. Let us assume 

 

Figure 2.1: Visual representation of how gradient area encodes spatial frequencies into the MRI 

signal. A linear gradient of magnitude 𝐺 is applied laterally across the patient. This causes the 

spins of the protons (shown in pink arrows) to accumulate phase depending on the strength of 

the gradient field at their location and the duration of the applied gradient. (a) The gradient is 

applied for a short period of time. This causes little phase to accumulate in the spins and so 

corresponds to a low spatial frequency. (b) The gradient field is left on for longer allowing more 

phase to accumulate in the spins. This allows for higher spatial frequency components to be 

sampled. Figure adopted from David Higgins educational session at ISMRM 2018. 
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fixed Cartesian sampling in k-space such that the resolution is Δ𝑘𝑥 × Δ𝑘𝑦 × Δ𝑘𝑧 . The 

resulting discrete Fourier transform pairs are: 

𝜌(𝑥, 𝑦, 𝑧) =
1

𝑁𝑥𝑁𝑦𝑁𝑧

∑ ∑ ∑ 𝑠(𝑛𝑥Δ𝑘𝑥, 𝑛𝑦Δ𝑘𝑦 , 𝑛𝑧Δ𝑘𝑧)e
2𝜋𝑖(𝑛𝑥Δ𝑘𝑥𝑥+𝑛𝑦Δ𝑘𝑦𝑦+𝑛𝑧Δ𝑘𝑧𝑧),

𝑁𝑧−1

𝑛𝑧=0

𝑁𝑦−1 

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

(2. 20) 

𝑠(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) = ∑ ∑ ∑ 𝜌(𝑛𝑥Δ𝑥, 𝑛𝑦Δ𝑦, 𝑛𝑧Δ𝑧)e−2𝜋𝑖(𝑛𝑥𝑘𝑥Δ𝑥+𝑛𝑦𝑘𝑦Δ𝑦+𝑛𝑧𝑘𝑧Δ𝑧).

𝑁𝑧−1

𝑛𝑧=0

𝑁𝑦−1 

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

(2. 21) 

The factor out front of equation 2.20 is required to preserve the total energy in the system.  

2.1.3 K-Space Sampling Patterns 

The choice of k-space trajectory is an important decision to make prior to an MRI scan. 

This trajectory is commonly called the sampling pattern. The choice of sampling pattern 

is determined by the application of the scan and the type of reconstruction to be used. As 

shown in Figure 2.1, while a constant gradient is applied the spatial frequency being 

sampled along this direction will continuously increase. This allows for rapid sampling of 

the k-space vectors along this direction. This gradient is referred to as the frequency 

 
Figure 2.2: Example demonstrating the relationship between an image (left) and its k-space 

(right). The dots on the k-space are to emphasize the fact that it is sampled at discrete locations. 

To sample at the location shown by vector �⃗� , a gradient 𝐺 (𝑡) would need to be applied for a 

time 𝑡 such that �⃗� =
𝛾

2𝜋
∫ 𝐺 (𝑡′)𝑑𝑡′

𝑡

0
. 
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encoding/read out gradient. If one wishes to collect data in 2D (as is required to generate 

a conventional MR image), phase must be pre-encoded in a perpendicular direction before 

the frequency encoding gradient is applied. This second gradient, which is applied for a 

fixed time and magnitude prior to readout, is called the phase encoding gradient. This 

combination of phase and frequency encoding gradients allows one to sample a full 2D 

plane in k-space. If one wished to sample in 3D, a second phase encoding gradient is 

usually required. Broadly speaking, 2D sampling patterns can be either Cartesian or non-

Cartesian. As the name suggests, Cartesian sampling samples k-space points that lie on the 

Cartesian 𝑥, 𝑦 grids, usually at fixed intervals, but not necessarily (Figure 2.3a). Non-

Cartesian sampling patterns encompass all other sampling patterns. Common non-

Cartesian sampling patterns include radial and spiral sampling patterns (Figure 2.3 b and 

c). These sampling patterns offer some advantages over Cartesian sampling. For example, 

since a radial sampling pattern samples the centre of k-space where the low spatial 

frequencies are located during each frequency encoding line, it is typically more rigorous 

to motion artifacts. Spiral allows for rapid coverage of k-space since the whole pattern is a 

single frequency encoding line. However, these non-Cartesian sampling patterns typically 

require more advanced reconstruction algorithms and precise gradient fields. Three-

       
 (a) (b) (c) 

Figure 2.3: Examples of common 2-dimensional sampling patterns. (a) Cartesian with uniform 

sampling density, (b) Radial, and (c) Spiral. 
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dimensional sampling allows for additional flexibility in sampling patterns. It is common 

practice to perform phase encoding along two dimensions and then frequency encoding 

along the third. Common three dimensional sampling patterns include Poisson disc, 

DISCO [40], or stack-of-stars. Stack-of-stars sampling is an example of a 3D sampling 

schema that requires only a single phase encoding gradient. 

2.1.4 Golden Angle Radial Sampling with Sliding Window Reconstruction 

Radial sampling is achieved by repeatedly rotating a line (called a ray) that passes 

through the centre of k-space while incrementing the orientation of the ray by a fixed angle 

Δ𝜑 each time. For many applications it is advantageous to set Δ𝜑 to be the golden angle 

(137.5 degrees/2.40 radians). Under this condition, each successive ray will be guaranteed 

to bisect the largest gap in k-space. To demonstrate this, Figure 2.4 shows the acquisition 

of the first 9 rays under two scenarios: Δ𝜑 = 𝜋/9 and Δ𝜑 = 2.40 radians. For the non-

golden angle based sampling pattern, the gaps in k-space coverage are non-uniform until 

the sampling is complete, whereas golden angle sampling ensures consistent sampling 

uniformity regardless of the number of rays used [41]. Note that k-space sampling 

uniformity is not the same as k-space coverage. The number of rays collected determines 

 

Figure 2.4 Examples of data acquisition for radial sampling patterns for (a) Δ𝜑 = 𝜋/9 and (b) 

Δφ = 2.40 radians (the golden angle).  
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the amount of k-space coverage and Δ𝜑 determines the uniformity of sampling. A 3D 

extension of this imaging scheme is called stack-of-stars, which samples a ray in the 𝑘𝑥, 𝑘𝑦- 

plane at a fixed angle for a specified range of 𝑘𝑧 before rotating the angle of the ray and 

repeating. 

Since the angle of the first ray is arbitrary, when performing golden angle sampling any 

subset of rays may be grouped together and uniform coverage of k-space is still guaranteed. 

This allows one to use a sliding window reconstruction when reconstructing images of a 

dynamic data set [41]. This technique allows for images to be reconstructed with arbitrary 

window length and temporal position (Figure 2.5). When imaging a dynamic process, as in 

DCE MRI, the window length determines the temporal footprint of the reconstructed 

images. The temporal footprint is the period of time during which an image “occurs”. All 

 

Figure 2.5: Visualization of how rays sampled with golden angle separation can be grouped 

during sliding window reconstruction. The vertical arrows at the top of the figure represent the 

sequential collection of rays through time. (a) Rays are grouped in eight rays per phase. (b) 

Rays are grouped in 12 rays per phase. (c) Rays are grouped in 12 rays per phase with 50% 

overlap. 
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temporal dynamics that occur in this time period are averaged. This is a similar concept to 

temporal resolution, which is the smallest period of time over which a time-dependent 

behavior can be resolved. However, due to the ambiguity in measuring temporal resolution, 

especially with a sliding window reconstruction where the temporal footprint and frame 

rate can be de-coupled, temporal footprint is used to define the measure of temporal fidelity 

of a scan throughout this thesis. In a DCE scan, the resulting image from a group of rays is 

called a frame, similar to a frame in a movie. Frame rate refers to the number of images 

generated in the DCE scan per unit time. Since the temporal footprint is equivalent to the 

number of rays combined in an image, it also specifies the amount of k-space coverage and 

thus image quality. Therefore, there is an inverse relationship between image quality and 

temporal footprint. 

The power of the sliding window reconstruction is that the temporal footprint does not 

need to be specified before the scan since an arbitrary number of rays can be combined and 

uniform k-space coverage is still guaranteed due to the golden angle sampling pattern. 

Further, with sliding window reconstruction, it is also possible to have overlap of the 

windows. This is controlled by the percent of overlap between adjacent frames. Overlap 

provides additional frame rate without changing the temporal footprint and thus the image 

quality (Figure 2.5c). For example, using a 50% overlap of two would double the frame 

rate, while the temporal footprint would remain the same. 

2.2 Image Reconstruction Techniques 

When considering image reconstruction techniques, it is often convenient to consider 

the image as a one-dimensional vector instead of a multi-dimensional array. Let us then 

define the image as 𝑥 ∈ ℝ𝑁, where 𝑁 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧. The corresponding fully sampled 
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k-space would then be 𝑦 ∈ ℂ𝑁, such that 𝑦 = FT{𝑥}. If we were then to sample 𝑁 

components of k-space (while satisfying the Nyquist criteria) the process of image 

reconstruction would be trivial as the image could be recovered by simply Fourier 

transforming the k-space data, a linear transformation. However, it is often impractical to 

fully sample k-space due to reasons such as high temporal resolution requirements, 

concerns of motion artifacts, or increasing patient throughput. Thus, we adopt a technique 

called undersampling where only a subset of points in k-space are collected. The degree of 

undersampling is controlled by the undersampling factor, which is defined as the ratio of 

points in the fully sampled k-space array to the number of points actually sampled. The 

undersampling factor can also be called the acceleration factor because an undersampling 

factor of 𝑅 will reduce the sampling requirements by a factor of 𝑅, thus accelerating the 

scan time by the same factor. 

Undersampling allows for accelerated scans, however if the sampling density is too low 

(i.e. below the Nyquist criterion of twice the highest frequency in the image) aliasing 

artifacts that will degrade the quality of the image will occur if one tries to reconstruct the 

image with a simple Fourier transform. Aliasing artifacts occur when signals from higher 

spatial frequencies are erroneously attributed to lower spatial frequencies. The degree of 

aliasing artifacts is controlled by the undersampling factor, but the characteristics of the 

aliasing artifacts are dependent on the choice of sampling pattern. Sampling patterns can 

be considered to be either coherent or incoherent. Coherent sampling patterns have 

equispaced k-space undersampling and will lead to coherent artifacts (e.g. phase wrap 

around) whereas incoherent random undersampling will lead to incoherent artifacts that 

appear noise-like (Figure 2.6).  Due to the non-Cartesian design of radial sampling, the 
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streaking artifacts characteristic to this sampling pattern will also appear to a large degree 

incoherent. In order to reduce the presence of aliasing artifacts from undersampled k-space 

data, advanced non-linear reconstruction techniques are required. 

2.2.1 Parallel Imaging 

So far, it has been assumed that the signal is detected by a single receiver coil. However, 

multiple coils can be used and they each detect a signal in parallel. Since the coils are 

located in different locations in space, they will have different spatial sensitivities to 

regions in the body i.e. a coil will be more sensitive to a signal that originates near it than 

a signal that originates from further away. These differences in coil sensitivities provide 

additional spatial information within the MR signal. This additional information from the 

 

 

Figure 2.6: Examples of how different sampling patterns affect images reconstructed with 

Fourier transform. The top-row shows the zero-filled k-space for a retrospectively 

undersampled data set with the corresponding image reconstructed with a Fourier transform on 

the bottom row. Coherent undersampling was done by skipping two of every three lines along 

the vertical direction. Incoherent sampling was performed with the CIRCUS [71] sampling 

pattern. Since radial is non-Cartesian the sampling pattern is shown instead of the k-space.  
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coil sensitivities profile can compensate for collecting fewer phase encoding lines, which 

would result in an acceleration of scan time. The multiple receiver coils can also 

compensate for the loss of SNR that results from undersampling. 

Parallel imaging works by collecting undersampled k-space data for each coil and then 

using the information inherent in the spatial sensitivities of each coil to remove the aliasing 

artifacts. PI works best with coherent artifacts where phase encoding lines of k-space are 

systemically skipped. As discussed in the Introduction, the problem of removing these 

artifacts can be broken into two categories: image domain approaches (e.g. SENSE) where 

the phase wrapping artifacts are unfolded or frequency domain approaches (e.g. GRAPPA) 

where the missing phase encoding lines are filled in before the Fourier transform is applied. 

SENSE-based parallel imaging techniques are performed in the image domain after the 

aliased images are reconstructed from the undersampled data. The first step in this process 

is to generate the coil sensitivity maps. This is done by collecting a set of fully sampled 

low resolution images prior to the collection of the accelerated data. Then, the k-space data 

is acquired at full resolution with a specified undersampling factor along the phase 

encoding direction. Due to the low sampling density in this direction wrap around artifacts 

will occur where the signal of one voxel is erroneously mapped to another voxel as seen in 

Figure 2.7a. The process of unwrapping the aliased image requires the generation of an 

unfolding matrix 𝑈 that can only be calculated when the number of coils is greater than the 

number of voxels superimposed by aliasing. This puts a theoretical limit on the 

undersampling factor at the number of coils used during imaging. For full details on how 

to calculate 𝑈, please refer to the original SENSE paper [18]. 
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The data acquisition during GRAPPA-like techniques is similar to SENSE in that phase 

encoding lines are also skipped, which would result in phase wrapping artifacts. These 

techniques work by estimating the missing lines in k-space before the Fourier transform 

such that aliased images are never generated. During data acquisition, a fully sampled auto-

calibration signal (ACS) is collected in the center of k-space. From the ACS and its 

neighbouring points, a set of weights is learned to interpolate k-space points from a linear 

combination of these neighbouring points (Figure 2.7b). The weights use data collected by 

all the coils. This set of weights is then used to fill in all the missing lines and unaliased 

images are then generated for each coil, which are then combined to form the final image 

by taking the sum of squares of the coil image. Again, for details on how to calculate the 

weights to find the missing k-space points please refer to the original GRAPPA paper [19]. 

2.2.2 Compressed Sensing  

A compressible image/signal is one where it is possible to remove a significant portion 

of the information from an image and the image will look largely the same. This is 

 
  (a) (b) 

Figure 2.7: Visualizations of parallel imaging techniques. (a) Image-domain based 

reconstruction. Underdamping reduces the FOV, resulting in aliasing artifacts where pixels are 

mapped to incorrect locations. Reconstruction amounts to unfolding the reduced FOV. Figure 

from Pruessmann et al. [18]. (b) Frequency-domain based reconstruction. Missing k-space data 

is estimated as a weighted sum of neighbouring values. ACS stands for auto-calibration signal. 

Figure from Griswold et al. [19]. 
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accomplished by removing many unnecessary components of the image in some transform 

domain (e.g. in the wavelet domain for the JPEG2000 compression algorithm). This allows 

the digital image to be stored in a format requiring much less computer memory. MR 

images are compressible. This is possible because MR images exhibit transform sparsity 

i.e. they have a sparse representation in some transform domain. By definition, 

compressibility is similar to sparsity. Whereas sparsity means that most components in a 

signal are zero, compressible means that most components are of such a low intensity 

relative to a small number of relatively high intensity signals that they can be approximated 

as zero. With this in mind, I will refer to both compressible and sparse signals simply as 

sparse. 

CS was motivated by the fact that, if an MR signal is sparse such that it can be 

represented by a fraction of the components of the signal in some transform domain, why 

collect all the other data during acquisition since this will prolong imaging time? CS 

reconstruction is akin to recovering the few high intensity components from highly 

undersampled k-space data. This is accomplished by incorporating the prior information 

about the sparsity of the image into the reconstruction algorithm. This theory was an 

important development in MRI as this technique allows one to undersample based on the 

redundancy of information in MRI data as opposed to the enforced redundancy such as that 

resulting from the use of multiple receive coils. This resulted in a paradigm shift in MRI 

research towards reconstruction of images from highly undersampled data. 

There are three conditions that are required for successful CS reconstruction of MRI 

data: 

1. The recovered image must be sparse in some transform domain. 
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2. Data must be sampled via a pseudorandom sampling trajectory. 

3. A nonlinear reconstruction technique which can enforce data consistency and 

sparsity must be used.  

Common examples of transform sparsity were shown in Figure 1.2. However, in this 

thesis only wavelet sparsity is explored. Wavelets are functions of zero net-area that 

represent oscillations of finite duration. Similar to a Fourier transform, which represents 

an image in a frequency basis, a wavelet transform represents an image in the wavelet basis. 

The requirement for transform sparsity in CS is related to the requirement for incoherent 

sampling. As was seen in Figure 2.6, incoherent sampling leads to incoherent and diffuse 

artifacts that appear noise-like. The artifacts will appear similarly noise-like in the 

transform domain. Since the sparse representation of the image has a low number of high 

intensity components, they can easily be separated from the noise-like artifacts. An 

example of this is shown in Figure 2.8. Here a sum of sinusoidal functions is presented. 

While not sparse in the time domain, sinusoidal functions are very sparse in the frequency 

domain. In this example, three scenarios are presented: (1) sampling above the Nyquist 

criteria, (2) uniformly sampling sub-Nyquist, and (3) non-uniformly sampling sub-Nyquist. 

In the first scenario, the sparse components of the signal are easily recoverable in the 

Fourier domain. In the second scenario, the low sampling density leads to coherent aliasing 

artifacts that are indistinguishable from the true signal in the Fourier domain. In the third 

scenario, the same number of samples are distributed non-uniformly across the time-

domain signal, the aliasing artifacts are diffuse, noise-like, and of a much lower magnitude 

than the true frequency components. It would thus be possible to recover the true signal 

from this highly undersampled data with an appropriate reconstruction algorithm. 
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As shown in the Figure 2.8, a simple Fourier transform on the undersampled data will 

lead to an aliased image. Even with non-uniform undersampling, this will be a noisy image 

of low quality. CS reconstruction works by enforcing sparsity in the transform domain. The 

Fourier transform at the bottom of Figure 2.8 is not sparse even though we know that the 

 

Figure 2.8: Example of different sampling rates and patterns of a signal composed of the sum 

of two sinusoids (20Hz and 50Hz). The signal in the time domain is shown in the column on 

the left and the Fourier transform is on the right. (Top) Sampling rate of 512Hz. The signal is 

perfectly represented in the Fourier domain. (Middle) Uniform sampling at 64Hz (128 samples 

total). The red markers indicate the sampling points on the original signal. Due to the low 

sampling rate, the true signal in the Fourier domain is indistinguishable from the aliasing 

artifacts. (Bottom) Non-uniform sampling of the same number of points (128). The non-

uniform sampling leads to non-uniform artifacts in the Fourier domain that appear diffuse and 

noise like. The true components are easily distinguishable. 
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true signal should be (See the Fourier transform at the top of Figure 2.8). By incorporating 

the prior knowledge that an MR image must be sparse in an appropriate transform domain 

into the reconstruction algorithm, we can suppress these aliasing artifacts. The reason 

incoherent sampling is required is because otherwise the aliasing artifacts would be 

indistinguishable from the true signal. However, it is not enough to just promote sparsity, 

as it is trivial to generate an arbitrarily sparse signal. Consistency between the raw data and 

the reconstructed data must also be ensured. Thus, CS reconstruction is a balancing act 

between data consistency and promoting sparsity. In symbols, the image 𝑥  reconstructed 

from the undersampled k-space data 𝑦  is the image that minimizes the following equation: 

argmin
𝑥 

||𝐴𝑥 − 𝑦 ||2
2 + 𝜆||Ψ𝑥 ||1 (2. 22) 

where 𝐴 is the sensing matrix that incorporated information such as the Fourier transform, 

sampling pattern, and coil sensitivities, Ψ is the sparsifying transform, 𝜆 is the 

regularization weight that controls the trade-off between data consistency and sparsity, and 

‖⋅‖1 is the ℓ1-norm. Image reconstruction is thus is an unconstrained convex optimization 

problem, which can be solved by iterative methods such as soft thresholding or non-linear 

conjugate gradients. 

2.2.3 Berkeley Advanced Reconstruction Toolbox (BART) 

The Berkeley Advanced Reconstruction Toolbox (BART) [42] is an open source image 

reconstruction library that is a valuable research tool for MR image reconstruction. This 

toolbox has the capabilities for multi-dimensional array manipulation, Fourier and wavelet 

analysis, and iterative reconstruction algorithms such as PI and CS. The toolbox is built in 

C but allows for MATLAB (MathWorks, MA, USA) interfacing. It also has the capabilities 
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of handling non-Cartesian data, which is extremely valuable for dealing with the radial data 

in Chapter 4. The pics (parallel imaging and compressed sensing) command was used 

for all CS reconstruction in this thesis. This command solves equation 2.22 for an input k-

space 𝑦  with specified sparsifying transform and regularization weight. Coil sensitivity 

maps may also be provided to incorporate PI into the reconstruction, however all images 

in this thesis were reconstructed with just a single coil. The nufft (non-uniform fast 

Fourier transform) was also used to generate the stack-of-stars data in Chapter 4. BART 

version 3.01 was used for all cases. 

2.3 T1 Relaxation and Contrast Agents 

The k-space of an image is typically not all collected in a single continuous acquisition. 

This is infeasible because, as the data is being collected, the signal is decaying due to 𝑇1 

and 𝑇2 relaxation. During a single scan, it is common to use multiple RF pulses to 

repeatedly excite the magnetization until all the data is collected. The time between RF 

pulses is called the repetition time or TR. If TR ≫ 𝑇1 in a region, the longitudinal 

magnetization will fully return to its equilibrium value, 𝑀0. During the next RF pulse, all 

of 𝑀0 can be tipped into the transverse plane to generate a signal. However, if TR ≈ 𝑇1 in 

a region, then the longitudinal magnetization will not be fully recovered before the next 

RF pulse. This means less magnetization is accessible to be tipped into the transverse plane, 

so the signal will be smaller. The amount of magnetization that is recovered between each 

TR will depend upon 𝑇1 thus generating contrast between regions in the image based on 

variations of 𝑇1. 

𝑇1 relaxation, also known as longitudinal relaxation, is the time constant that defines 

how quickly longitudinal magnetization that is knocked into the transverse plane will return 
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to its equilibrium value as described by equation 2.7. For a short TR, a tissue with a shorter 

𝑇1 value will recover more longitudinal magnetization between excitations, so it will 

appear brighter than a tissue with a longer 𝑇1 value. However, if a long TR is used, then 

both tissues can fully recover their longitudinal magnetization so no additional contrast 

would be included in the image. Enhancing tissue contrast based on 𝑇1 value by using short 

TR is called 𝑇1 weighted imaging.  

Another name for 𝑇1 relaxation is spin-lattice relaxation, which provides more insight 

into the mechanics driving 𝑇1 relaxation. To understand this mechanism, we need to adopt 

a quantum mechanical framework. A proton is a spin ½ particle, meaning it can be in one 

of two energy states: a high energy excited state and a low energy relaxed state. These 

energy states are separated by an energy gap 𝐸 = ℏ𝜔 = ℏ𝛾𝐵0, where ℏ is Planck’s reduced 

constant. The relaxed energy state is when the magnetization is parallel to the external 

field. The excited state occurs when the RF pulse is applied and the magnetization gets 

knocked into the transverse plane. The misalignment between the spins and the magnetic 

field adds energy to the system. This is why we say RF pulse excitation. A spin in the high 

energy state will not spontaneously release energy to fall to the low energy state within any 

reasonable amount of time. There must be a mechanism that facilitates this transition. In 

clinical MRI, this mechanism is time varying dipole-dipole interactions between the proton 

and neighbouring molecules (called the lattice) due to thermal vibrations. This allows 

energy transfer between the excited proton and the lattice, which results in relaxation and 

recovery of the longitudinal magnetization. The degree of coupling between the spins and 

lattice depends on factors of the lattice such as the size and state of the constituent 

molecules. If the thermal vibrations of the neighbouring molecules occur at a similar 
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frequency to the precessional frequency of the spin then there will be more efficient energy 

transfer between the spins and the lattice. Higher energy transfer leads to faster relaxation 

and thus a shorter 𝑇1 time. These properties will vary between tissue leading to different 

𝑇1 times. 

Tissue relaxation times can be affected by the injection of contrast agent materials. In 

MRI, contrast agents are typically gadolinium based. Gadolinium is a strongly 

paramagnetic metal. This facilitates energy transfer between the spins and the lattice, thus 

reducing the local 𝑇1 relaxation times. This causes regions where the contrast agent is 

present to appear bright in 𝑇1 weighted images. 

2.4 Quantitative DCE MRI 

2.4.1 DCE MRI 

As discussed above, a contrast agent shortens the local 𝑇1 relaxation time leading to 

local signal enhancement.  DCE MRI is a dynamic imaging sequence that visualizes the 

movement of contrast agent as it travels through the circulatory system. This is achieved 

by generating a series of 𝑇1 weighted images with a high temporal resolution (~10-15 sec). 

Each image in the series is called a frame. Historically, the k-space data for each frame is 

collected independently. Since the temporal dynamics of the contrast agent occurs on the 

order of tens of seconds, a high temporal resolution is required. 

Spoiled gradient echo (SPGR) pulse sequences with a short TR (3-5msec) and a low flip 

angle (12 ̇) are commonly used. This allows for rapid data acquisition, helping achieve 

high temporal resolution. Undersampling can also be used to further increase temporal 

resolution. DCE MRI is actually very well suited for CS reconstruction due to the 

redundancy of information in the temporal dimension since images only change slightly 
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between frames [43]. So, while the data for each frame can be collected independently, 

reconstructing the full series at once can lead to improved image quality. View sharing, 

where sections of k-space are shared between frames, is also commonly used as with the 

DISCO sampling pattern [40]. Although not routinely used yet clinically, golden angle 

stack-of-stars sampling pattern with sliding window reconstruction has shown potential 

[17,44]. 

2.4.2 Pharmacokinetics 

Pharmacokinetics (PK) is the study of motion of a substance after it enters a living 

organism. For DCE MRI, this refers to the behavior of the contrast agent. The contrast 

agent is injected in bolus form intravenously. The contrast agent can then travel 

systemically throughout the body in the blood vessels. The time-dependent contrast agent 

concentration in the blood vessel is an important measurement for performing PK 

modelling in a tissue. The contrast agent concentration time-course of an artery that 

provides blood for a tissue of interest is called the arterial input function (AIF). 

The contrast agent can also leak out of the vessels into nearby tissues through the 

capillary walls. The rate at which this occurs plays an important role in determining the 

intensity of the signal in a tissue during a DCE scan. The dynamics of the contrast agent in 

a tissue is typically modelled with a two-compartment model: the vessel being one 

compartment and the extravascular extracellular space (EES) being the other. The EES is 

the space in the tissue between the cells that make up the tissue. The contrast agent diffuses 

into and out of the EES at a rate proportional to the difference in concentration between 

the two compartments. This constant of proportionality is called the volume transfer 

constant 𝐾𝑡𝑟𝑎𝑛𝑠, and reflects tissue and vessel properties such as blood perfusion rate, 
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capillary permeability, and capillary surface area and has units of min−1. Other important 

PK parameters included the blood plasma volume per unit volume of tissue 𝑣𝑝, the EES 

volume per unit volume of tissue 𝑣𝑒, and the efflux rate constant from EES to plasma 𝑘𝑒𝑝, 

with units of min−1 [45]. These parameters are shown visually in Figure 2.9. The PK 

parameters define the time course of the contrast agent concentration in the tissue 𝐶𝑡(𝑡). 

Histopathological differences in perfusion and permeability are what makes DCE a 

valuable tool for diagnosis. During growth, a tumor can perform angiogenesis where it 

creates new blood vessels. These blood vessels can have higher permeability than healthy 

tissue resulting in elevated 𝐾𝑡𝑟𝑎𝑛𝑠 values. This results in rapid transfer of the contrast agent 

to the tissue and will manifest as early signal enhancement in the DCE scan. 

2.4.3 Tofts Model 

To determine the PK parameters in a tissue, 𝐶𝑡 must be fit to a PK model such as the 

Tofts model [6], which will be the formalism used in this thesis. The driving force of uptake 

 
Figure 2.9: Visualization of PK parameters. In this diagram the blue background represents the 

extravascular extracellular space, the red cylinder is a blood vessel, the white ovals are tissue 

cells, the red ovals are blood cells and the yellow circles are the molecules of the contrast agent. 

The PK parameters 𝐾𝑡𝑟𝑎𝑛𝑠, 𝑘𝑒𝑝, 𝑣𝑒 , and 𝑣𝑝 are described in the text. 
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of the contrast agent into the tissue is the difference in concentration between the blood 

stream and the tissue. When considering this concentration gradient, we need to consider 

the concentration in blood plasma, 𝐶𝑝(𝑡) = 𝐶𝑏(𝑡)/𝑣𝑝 where 𝐶𝑏 is the concentration in 

whole blood, since the contrast agent does not enter blood cells. Similarly, in the tissue, 

the contrast agent is not known to enter the tissue cells, so the important concentration for 

contrast agent dynamics is the concentration in the EES, 𝐶𝑒(𝑡) = 𝐶𝑡(𝑡)/𝑣𝑒. 

If we then assume linear intercompartmental flow, isodirectional flow rate across the 

capillary, and neglect contributions of 𝐶𝑝 to 𝐶𝑡 (accurate for 𝑣𝑝 ≪ 1) we get the following 

differential equation: 

𝑑𝐶𝑡

𝑑𝑡
= 𝐾𝑡𝑟𝑎𝑛𝑠 (𝐶𝑝 −

𝐶𝑡

𝑣𝑒
) . (2. 23) 

This shows in symbols the premise that the rate of contrast agent uptake into/out of the 

tissue is proportional to the difference in concentration between the plasma and the EES, 

and the constant of proportionality is 𝐾𝑡𝑟𝑎𝑛𝑠. This simple first order differential equation 

can be solved to find: 

𝐶𝑡(𝑡) = 𝐾𝑡𝑟𝑎𝑛𝑠 ∫ 𝐶𝑝(𝑡
′)e

−
𝐾𝑡𝑟𝑎𝑛𝑠

𝑣𝑒
(𝑡′−𝑡)

𝑑𝑡′.
𝑡

0

(2. 24) 

If the assumption 𝑣𝑝 ≪ 1 does not hold (i.e. if the tissue is highly vascular), then an 

additional term my be added to account for the contribution of the blood plasma 

concentration: 

𝐶𝑡(𝑡) = 𝑣𝑝𝐶𝑝(𝑡)  +  𝐾𝑡𝑟𝑎𝑛𝑠 ∫ 𝐶𝑝(𝑡
′)e

−
𝐾𝑡𝑟𝑎𝑛𝑠

𝑣𝑒
(𝑡′−𝑡)

𝑑𝑡′.
𝑡

0

(2. 25) 
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This is commonly referred to as the extended Tofts model. 

2.4.4 MRI Signal Conversion 

During a DCE scan, we do not measure 𝐶𝑡(𝑡) directly. We measure a signal 𝑆(𝑡) in 

arbitrary units, which must be converted to 𝐶𝑡 before PK modelling can occur. In this 

framework, 𝑆 is the intensity of a voxel and 𝑡 is the effective time the frame occurred. The 

first step to doing this is understanding how 𝐶𝑡 affects 𝑇1. As discussed, the contrast agent 

decreases the local 𝑇1 relaxation time. Thus, since 𝐶𝑡 is a function of time, 𝑇1 will also be. 

It is common to assume a linear relationship between the relaxation rates and 𝐶𝑡: 

1

𝑇1(𝑡)
= 𝑟1𝐶𝑡(𝑡) +

1

𝑇10
, (2. 26) 

where 𝑟1 is the longitudinal relaxivity (units: min−1sec−1) is a measure of how much the 

contrast agent affects the local 𝑇1 and 𝑇10 is the initial 𝑇1 when no contrast agent is present. 

This means an additional scan must be performed before DCE to find this value. So, we 

now need to find a relationship between 𝑇1 and 𝑆. 

As mentioned above, it is common practice to use a short TR value in DCE scans. When 

this occurs, 𝑀𝑧 may not fully recover to 𝑀0 resulting in saturation. However, if 𝑀𝑧 returns 

to the same value after each RF pulse in a sequence of pulses the magnetization is said to 

be in a steady state. To connect this to 𝑆, lets assume that just before an RF pulse is applied 

the longitudinal magnetization has a value of 𝑀𝑧𝐴, which may or may not be equal to 𝑀0. 

An RF pulse is applied for a flip angle 𝛼 such that the new value of 𝑀𝑧 is: 

𝑀𝑧𝐵 = 𝑀𝑧𝐴 cos 𝛼 . (2. 27) 
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The 𝑀𝑧 will relax according to equation 2.7, such that the magnetization at a time TR later 

will be: 

𝑀𝑧𝐶 = 𝑀𝑧𝐴 cos 𝛼 exp (−
𝑇𝑅

𝑇1
) + 𝑀0 (1 − exp (−

𝑇𝑅

𝑇1
)) , (2. 28) 

A steady state magnetization will occur with 𝑀𝑧𝐶 = 𝑀𝑧𝐴. Plugging this into equation (2.28) 

and solving for 𝑀𝑧𝐴 results in: 

𝑀𝑧𝐴 = 𝑀0

1 − exp (−
𝑇𝑅
𝑇1

)

1 − cos(𝛼) exp (−
𝑇𝑅
𝑇1

)
, (2. 29) 

The signal is proportional to the transverse magnetization which is equal to sin 𝛼 𝑀𝑧, 

ignoring 𝑇2 effects (equation 2.13). Thus, if we add a constant of proportionality 𝑘 we find 

the spoiled gradient equation: 

𝑆(𝑡) = 𝑘𝑀0 sin 𝛼
1 − exp (−

𝑇𝑅
𝑇1(𝑡)

)

1 − cos(𝛼) exp (−
𝑇𝑅

𝑇1(𝑡)
)
, (2. 30) 

Combining equation 2.26 and 2.30, one can convert between the tissue concentration of 

the contrast agent and the resulting MR signal. 

2.5 Image Quality Metrics 

IQMs are computer algorithms that allow a machine to calculate a score for an image 

that corresponds to the quality of that image. Quality, in this sense, is defined individually 

by each IQM. For example, quality may be defined by the average error between pixels of 

a reference and degraded image or by how by how much shared information there is 

between the two images. For full-reference IQMs, the image quality score is calculated for 
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a degraded image 𝑌 relative to a reference image 𝑋. This section will summarize the 10 

full reference IQMs used in this thesis. 

2.5.1 Root Mean Squared Error (RMSE) 

The RMSE is the simplest of all full-reference IQMs. It is the square root of the sum of 

squares of the pixel-by-pixel difference between the reference and the degraded images. 

The equation for the RMSE for images 𝑋 and 𝑌 with 𝑁 pixels is: 

𝑅𝑀𝑆𝐸(𝑋, 𝑌) =  √
∑ (𝑋(𝑖) − 𝑌(𝑖))

2𝑁
𝑖=1

𝑁
. (2. 31) 

Where 𝑋(𝑖) is the value of the 𝑖𝑡ℎ pixel in image 𝑋. 

2.5.2 Peak Signal to Noise Ratio (PSNR) 

The PSNR is a transformation of RMSE based on the interpretation of the degraded 

image as the sum of the reference image and an error signal. When one subtracts the 

reference image from the degraded image, like when calculating the RMSE, what remains 

is the error signal. The PSNR is the ratio of the power of the maximum signal in the 

reference image to the average signal in the error (i.e. RMSE), given by the equation: 

𝑃𝑆𝑁𝑅(𝑋, 𝑌) = 20 log (
max(𝑋)

𝑅𝑀𝑆𝐸(𝑋, 𝑌)
) . (2. 32) 

PSNR is a built-in MATLAB function. 

2.5.3 Structural Similarity Index (SSIM) 

The RMSE and PSNR incorporate no information about how the human visual system 

(HVS) interprets an image and so are generally accepted to not correlate well with 

subjective scoring of image quality. The SSIM [34] was formed with the hypothesis that 
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the HVS was adapted to extract structural information, such as edges, from an image. So a 

loss of structural information will correspond to a loss of image quality as perceived by a 

human. The SSIM is also normalized for local variations in luminance and contrast. The 

comparison of luminance, contrast, and structure between 𝑋 and 𝑌 are given by the 

equations: 

𝑙(𝑋, 𝑌) =  
2𝜇𝑋𝜇𝑌 + 𝐶1

𝜇𝑋
2 + 𝜇𝑦

2 + 𝐶1

, (2. 33) 

𝑐(𝑋, 𝑌) =  
2𝜎𝑋𝜎𝑌 + 𝐶2

𝜎𝑌
2 + 𝜎𝑌

2 + 𝐶2

, (2. 34) 

𝑠(𝑋, 𝑌) =  
𝜎𝑋𝑌 + 𝐶3

𝜎𝑋𝜎𝑌 + 𝐶3
, (2. 35) 

respectively, where 𝜇 is the mean of the signal, 𝜎 is the standard deviation, 𝜎𝑋𝑌 is the 

covariance between 𝑋 and 𝑌, and 𝐶1, 𝐶2, and 𝐶3 account for instabilities when the local 

luminance or contrast is close to zero. SSIM is the weighted product of 𝑙, 𝑐, and 𝑠 such that 

the local SSIM for pixel 𝑖 is: 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙(𝑋, 𝑌)]𝛼[𝑐(𝑋, 𝑌)]𝛽[𝑠(𝑋, 𝑌)]𝛾 

where 𝛼, 𝛽 and 𝛾 control the relative importance of each component. Each component can 

all be weighted individually, but it is common to weight them all equally and set 𝐶3 =

𝐶2/2, resulting in the equation: 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑋𝜇𝑌 + 𝐶1)(2𝜎𝑋𝑌 + 𝐶2)

(𝜇𝑋
2 + 𝜇𝑌

2 + 𝐶1)(𝜎𝑋
2 + 𝜎𝑌

2 + 𝐶2)
, (2. 36) 

The SSIM is calculated on local 8x8 squares with Gaussian weighting and then averaged 

to generate a single score for the image. SSIM is a built in MATLAB function.  
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2.5.4 Multi-scale SSIM (MSSSIM) 

MSSSIM [46] extends the SSIM to multiple scales. In this context, scale is related to 

the size of features and how visible they are at different resolutions and viewing distances. 

This can be an important factor to consider in image quality assessment since the HVS is 

not uniformly sensitive to all spatial frequencies. The MSSSIM operates on up to five 

scales. For each scale, the images are down-sampled by a factor of two and passed through 

a low-pass filter. The structure and contrast are compared at each scale, but the luminance 

is only compared at the final scale 𝑀. The final score is then the weighted product of each 

of these components: 

𝑀𝑆𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙𝑀(𝑋, 𝑌)]𝛼𝑀 ∏[𝑐𝑗(𝑋, 𝑌)]
𝛽𝑗

[𝑠𝑗(𝑋, 𝑌)]
𝛾𝑗

𝑀

𝑗=1

, (2. 37) 

The weights 𝛼𝑗 , 𝛽𝑗, and 𝛾𝑗 can all be set individually, but again it is common practice to 

keep the weights equal for each scale. The authors of this metric determined the default 

weights by measuring the visibility of degradations at different scales. Scales for 

degradations that were determined to be more visible were then weighted higher. 

Normalizing the weights to unity resulted in the following default weights: 𝛽1 = 𝛾1 =

0.0448, 𝛽2 = 𝛾2 = 0.2856, 𝛽3 = 𝛾3 = 0.3001, 𝛽4 = 𝛾4 = 0.2363, and 𝛼5 = 𝛽5 = 𝛾5 =

0.1333. MATLAB code for MSSSIM can be found at 

https://www.ece.uwaterloo.ca/~z70wang/publications/msssim.html. 

2.5.5 Information Weighted SSIM (IWSSIM) 

In all the methods presented to far, a quality score is calculated locally and then averaged 

uniformly across the whole image, a process called error pooling to generate a single scalar 

value. IWSSIM [47] was developed with the hypothesis the error should not be pooled 
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uniformly, but should be weighted by the local information content i.e. regions where the 

HVS is drawn towards, such as edges or regions of fine texture. Each pixel is then assigned 

a weight 𝑤𝑖 proportional to the amount of information that it contains. For information on 

how these weights are calculated please refer to the IWSSIM reference [47]. Aside from 

the weighting, IWSSIM is calculated the same as MSSSIM: 

𝐼𝑆𝑆𝑆𝐼𝑀(𝑋, 𝑌) = [𝑙𝑀(𝑋, 𝑌)]𝛿𝑀 ∏
∑ 𝑤𝑗𝑖

𝑁
𝑖=1 [𝑐𝑗(𝑋𝑖, 𝑌𝑖)𝑠𝑗(𝑋𝑖, 𝑌𝑖)]

𝛿𝑗

∑ 𝑤𝑗𝑖
𝑁
𝑖=1

.

𝑀

𝑗=1

(2. 38) 

The factor 𝛿𝑗 is used for simplicity since 𝛼𝑗 = 𝛽𝑗 = 𝛾𝑗. The additional ∑  𝑖 is only implied 

in equation 2.37 since all the local calculations are averaged uniformly. There is no 

summation on 𝑙𝑀 because no weights are applied on the 𝑀𝑡ℎ scale. Code for IWSSIM can 

be found at https://ece.uwaterloo.ca/~z70wang/research/iwssim/. 

2.5.6 Gradient Magnitude Similarity Deviation (GMSD) 

The GMSD [48] is an attempt to develop an IQM that correlates well with subjective 

opinion of image quality, but is also computationally efficient. GMSD is the standard 

deviation of the gradient magnitude similarity (GMS) map. The GMS map of 𝑋 and 𝑌 is: 

𝐺𝑀𝑆(𝑥 ) =  
2𝑚𝑋(𝑥 )𝑚𝑌(𝑥 ) + 𝑐

𝑚𝑋
2(𝑥 ) + 𝑚𝑌

2(𝑥 ) + 𝑐
, (2. 39) 

where 𝑥  is the index of the pixel, 𝑐 is a stability constant, similar to 𝐶1 and 𝐶2 in SSIM, 

and 𝑚 is the gradient magnitude maps of 𝑋 and 𝑌. The gradient maps are generated by 

convolving a horizontal and vertical Prewitt filter, ℎ, with each image: 

𝑚𝑋 = √(𝑋 ∗ ℎ𝑥)2 + (𝑋 ∗ ℎ𝑦)
2
 , (2. 40) 
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where ∗ is the convolution operator. The gradient map for 𝑌 is similarly defined. MATLAB 

code for GMSD can be found at 

http://www.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm. 

2.5.7 Feature Similarity (FSIM) 

Similar to SSIM, FSIM [49] measures local structure, however it does so by measuring 

a property called the phase congruency (PC). The PC is a dimensionless feature that is high 

for regions where the underlying Fourier components are in phase. Since PC is 

dimensionless, it is invariant to changes in intensity and scale, which makes it attractive 

for image quality measurements.  

If we consider the Fourier expansion of a 1-D signal: 

𝐹(𝑥) =  ∑𝐴𝑛 cos(𝑛𝜔𝑥 + 𝜙𝑛),

𝑛

(2. 41) 

the phase congruency of the signal can be calculated by solving the following equation: 

𝑃𝐶(𝑥) = max
𝜃∈[0,2𝜋]

∑ 𝐴𝑛 cos(𝑛𝜔𝑥 + 𝜙𝑛 − 𝜃)𝑛

∑ 𝐴𝑛𝑛
, (2. 42) 

although more sophisticated techniques are typically used in practice [50].  

The PC map for 𝑋 and 𝑌 can be calculated for each pixel (indexed by vector 𝑥 ) to 

generate the PC similarity map: 

𝑃𝐶𝑆(𝑥 ) =  
2𝑃𝐶𝑋(𝑥 )𝑃𝐶𝑌(𝑥 ) + 𝑐

𝑃𝐶𝑋
2(𝑥 ) + 𝑃𝐶𝑌

2(𝑥 )2 + 𝑐
, (2. 43) 

where again 𝑐 is a small constant to add stability. Similarly, a GMS is calculated the same 

as 2.39. A net similarity map is generated from the weighted product of the PCS and GMS: 
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𝑆𝐿(𝑥 ) = [𝑃𝐶𝑆(𝑥 )]𝛼[𝐺𝑀𝑆(𝑥 )]𝛽 . (2. 44) 

The weights 𝛼 and 𝛽 can be chosen independently, but again it is common practice to set 

them both to unity. 

The map 𝑆𝐿(𝑥 ) is a measure of FSIM across the whole image. A weighted average is 

used to calculate a single scalar value, similar to IWSSIM. The weights are generated from 

the maximum value of 𝑃𝐶𝑋 and 𝑃𝐶𝑦 at each location, i.e. 𝑤(𝑥 ) = max (𝑃𝐶𝑋(𝑥 ), 𝑃𝐶𝑌(𝑥 )). 

So, the final formula for FSIM is:  

𝐹𝑆𝐼𝑀 =
∑ 𝑤(𝑥 )𝑆𝐿(𝑥 )𝑥 

∑ 𝑤(𝑥 )𝑥 
, (2. 45) 

MATLAB code for FSIM can be found at 

https://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm. 

2.5.8 Noise Quality Metrics (NQM) 

The authors of NQM [51] start from the framework that the degraded image is generated 

from the reference image degraded by linear frequency distortions and additive noise, 

however the two degradations are treated as independent by the HVS. This is a similar 

interpretation to the design of PSNR, but PSNR works under the assumption that all 

degradation can be modelled by noise whereas NQM separates the two components. NQM 

is calculated from the equation: 

𝑁𝑄𝑀 = 10 log (
∑ 𝑂𝑠

2(𝑥 )𝑥 

∑ (𝑂𝑠(𝑥 ) − 𝐼𝑠(𝑥 ))
2

𝑥 

) , (2. 46) 
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where 𝑂𝑠 and 𝐼𝑠 are the simulated versions of 𝑋 and 𝑌. Full details on how 𝑂𝑠 and 𝐼𝑠 are 

calculated can be found in the NQM paper [51]. NQM was implemented using the MeTriX 

MuX MATLAB package: https://github.com/sattarab/image-quality-tools. 

2.5.9 Visual Information Fidelity (VIF) 

All IQMs presented so far defined the quality of the degraded image as the 

similarity/fidelity to the reference image. VIF [52] takes a different approach where it is 

hypothesized that a degradation in image quality is due to a loss of information. In this 

model, the degraded image is modelled as the reference after it has passed through a 

distortion channel (Figure 2.10). VIF is then related to how much information that is 

present in the reference image can be extracted from the degraded image. 

The reference image is modelled in the wavelet domain using Gaussian scale mixtures 

based on natural scene statistics [53]. The distortion channel is modelled by common 

natural image degradations such as blurring, additive noise, and global/local contrast 

changes. The HVS is essentially modelled as an additional distortion channel that limits 

the available information. These distortions are modelled entirely as zero mean Gaussian 

noise. The VIF is defined as the ratio of mutual information, 𝐼, between the reference image 

and the output of the HVS channel when the distortion channel is present to when it is not 

present in the wavelet domain: 

 

Figure 2.10: Framework for VIF calculations [52]. A natural image 𝐶 is passed through a 

distortion channel to generate image 𝐷. Both images would be viewed by the HVS as images 

𝐸 and 𝐹. 
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𝑉𝐼𝐹 =
∑ 𝐼(𝐶𝑗 , 𝐹𝑗|𝑠𝑗)𝑗∈subbands

∑ 𝐼(𝐶𝑗, 𝐸𝑗|𝑠𝑗)𝑗∈subbands
, (2. 47) 

where subbands are the subbands of the wavelet decomposition, 𝑠 are the natural scene 

statistic model parameters, and 𝐶, 𝐹, and 𝐸 are as defined in Figure 2.10. MATLAB code 

for VIF is also found in the MeTriX MuX package. 

2.5.10 High Dynamic Range Visual Difference Predictor (HDRVDP) 

HDRVDP [54] can be considered a “bottom up” approach to image quality assessment. 

Whereas “top down” approaches like SSIM work from assumptions about the image and 

how that will affect visual quality, a bottom up approach works from assumptions about 

the HVS such as the optical transfer function, light scattering in eyes, and intensity 

sensitivity. HDRVDP works as both a visual difference predictor (i.e. probability of 

detecting a difference between two images) and a measure of image quality. Although the 

metric was designed for high dynamic range natural images, it has been used to evaluate 

the quality of medical images [55]. MATLAB code for HDRVDP can be found at 

http://hdrvdp.sourceforge.net/wiki/. 

 

  



48 

 

 

Chapter 3: Correlating IQMs and Radiologists’ Scores of Image 

Quality 

Contents of this chapter are based on the manuscript submitted to IEEE Transactions on 

Medial Imaging: “Comparison of Objective Image Quality Metrics to Expert Radiologists’ 

Scoring of Diagnostic Quality of MR Images” by Allister Mason et al. © 2019 IEEE. 

3.1 Study Motivation 

As discussed in Chapter 1, the purpose of an MR image is to convey diagnostic 

information to a radiologist. This means the quality of the image can be defined as how 

well it conveys this information [56]. Since, in a clinical setting, it is typically radiologists 

who assess these images, the radiologists’ ratings of image quality can be considered an 

appropriate measure of diagnostic image quality. However, applying this standard on a 

large scale is often infeasible due to large image library sizes, limited time availability of 

expert radiologists, and the inherent variability in a subjective scoring technique. Objective 

IQMs provide an alternative to manual subjective scoring by allowing image quality to be 

calculated by a computer. However, the relationship between radiologists’ rating of 

medical image quality and IQM scores is not well explored. 

The RMSE and, more recently, the SSIM [34] are two of the most popular full-reference 

IQMs used in the MRI literature for validating new image acquisition [57] and 

reconstruction techniques [58], including machine learning algorithms [59–62].  This may 

in part be driven by the fact that they are widely available and implemented by default 

within existing environments such as MATLAB. SSIM has also been implemented as an 

automated measure of MR image quality directly into new techniques. For instance, 

Hansen et al. [63] used SSIM to estimate singular-value thresholds to denoise C-13 data, 

and Akasaka et al. [64] used SSIM to guide the choice of regularization weight in 
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compressed sensing reconstruction. 

Since the goal in these studies is to generate images of high diagnostic value, an implicit 

assumption when using RMSE/SSIM is that they will correlate well with how a radiologist 

would perceive image quality. Along these lines, the metrics should correlate with 

radiologists’ rating of diagnostic image quality for a variety of image contrasts and 

degradations that can affect the diagnostic quality of an MR image such as noise or motion. 

Moreover, many other objective IQMs besides RMSE/SSIM have been developed in the 

image processing literature, and there may exist a more appropriate choice of IQM for 

assessment of MR image quality. To our knowledge, the efficacy of RMSE and SSIM have 

not been previously studied in this specific manner. 

Some previous studies that have attempted to quantify performance of common full 

reference objective IQMs for MR images have used non-expert raters [65,66]. For many 

non-medical IQM studies (for example, rating the quality of a television picture) the use of 

non-expert raters is sufficient because the quality is to be optimized for the target audience 

[67], which is usually a non-expert. However, this is not the case for medical images 

because medical images are designed to be viewed by expert radiologists. Through their 

specialized training, radiologists learn to evaluate images from a unique clinical 

perspective and so may have different opinions of image quality compared to non-expert 

raters [32]. A previous study by Renieblas et al. used expert raters, but only studied IQMs 

from the SSIM family [68]. Our work is extended to a more diverse group of IQMs. 

An understanding of the relationship of different objective IQMs for MR images and 

diagnostic image quality as perceived by a radiologist is important because, as discussed 

above, these metrics are increasingly used to validate and design new imaging techniques. 
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Therefore, it is imperative that the choice of metric reflect the goal: a high-quality 

diagnostic image for radiologist assessment. This study investigates correlations between 

RMSE, SSIM, and eight other common objective IQMs with radiologists’ assessments of 

diagnostic MR image quality. We hypothesize that the RMSE and SSIM will not 

demonstrate the highest correlation with radiologists’ ratings of diagnostic quality of MR 

images. High performing IQMs should have consistently high correlations across image 

type, anatomical regions, and degradation types.  

3.2 Methods and Materials 

3.2.1 Generation of Image Library 

Reference images were selected from Picture Archiving and Communication System of 

the QEII Health Sciences Centre in Halifax, NS with Research Ethics Board approval.  All 

images were anonymized before being transferred to a research server. The need for patient 

consent was waived. These MR images – clinically indicated and previously interpreted 

diagnostically as being negative for clinically relevant pathology - were chosen by a Royal 

College certified radiologist to have high signal to noise ratio, no visible artifacts, and no 

visible malignancy.  The decision to use images void of pathology was made pointedly, 

given that intraindividual variation in pathology leads to differences in lesion conspicuity, 

whereas for this study the only desired differences were those introduced by the 

degradation. Nine reference images were selected from the abdomen and from the brain 

each. All reference images were acquired with either a GE 3T MR 750 Discovery or 1.5T 

Signa HDxt scanner. Of the nine abdominal images, three each were of the liver (post-

contrast axial T1 LAVA-Flex), pancreas (pre-contrast axial T1 LAVA-Flex), and prostate 

(axial T2 PROPELLER). For the brain images, three axial T2 FLAIR, three axial T2 
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PROPELLER, and three sagittal T1 FLAIR images were used (Figure 3.1). All reference 

images were of size 512x512, except for two of the axial T2 FLAIR images, which were 

256x256. The reference images were originally stored as 16-bit integers with varying 

dynamic range. The differences in dynamic range complicated the objective image quality 

assessment calculations. To mitigate this problem, the images were first converted to 32-

bit floating point and normalized to unit intensity by linear contrast stretching.  

 Six types of degradations were individually applied to each image: white Gaussian 

noise, Gaussian blurring, Rician noise, undersampling of k-space data, wavelet 

compression, and motion artifacts. All degradation techniques were retrospectively applied 

in varying strengths to each reference image, with the exception of motion, which was only 

applied to the brain reference images. Retrospectively degrading the images allowed for 

controlled and consistent degradation of the images. Further, a ground truth reference 

image is available with this approach, which is how full reference IQMs are used in 

practice. The degradation techniques were chosen for their commonality in MR images and 

 

 

Figure 3.1: Representative set of reference images. (a) T2 FLAIR, (b) T2 PROPELLER, (c) T1 

FLAIR, (d) T1 LAVA-FLEX (post contrast), (e) T1 LAVA-FLEX (pre-contrast), (f) T2 

PROPELLER. © 2019 IEEE. 
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use in other similar imaging studies [69]. For each degradation type, a control parameter 

was determined that controlled the strength of the degradation. Each degradation was 

applied to each reference at four different strengths. This yielded a total image library of 

414 images including the reference images. Table 3.1 provides a summary of degradation 

methods and control parameter ranges, and a representative set of the degradations is 

shown in Figure 3.2. 

The Gaussian white noise and Rician noise images were generated by adding noise of a 

Gaussian distribution either directly to the image, or to the real and imaginary components 

of the Fourier transforms of the image, respectively. Gaussian blurred images were 

generated by applying a 2D Gaussian smoothing kernel of specified standard deviation σ, 

which defines the strength of the degradation.  Again, the standard deviation of the 

Gaussian distribution controlled the strength of these degradations. To implement motion 

artifacts, the 2D image was repeatedly Fourier transformed as it was translated horizontally 

across the frame to simulate motion during k-space acquisition, similar to Braun et al. [70]. 

After each Fourier transform, four lines of k-space were stored in a separate array. Once 

Table 3.1: Description of the six degradation types used. The control parameter controls the degree 

of each degradation. Degradation strengths for parameters were chosen at random between the 

minimum/maximum values. © 2019 IEEE. 

Degradation Type 
Control 

Parameter 

Minimum 

value 

Maximum 

value 

White Noise Standard deviation of Gaussian 0.03 0.1 

Gaussian Blur Standard deviation of Gaussian 

kernel (pixels) 

1 4 

Motion Percentage of frame shifted 0 10 

Rician Noise Standard deviation of Gaussian noise 

applied to k-space 

0.02 0.05 

Undersampling Undersampling factor 2 20 

Wavelet 

Compression 

Threshold level 0.01 0.25 
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the k-space was filled, it was Fourier transformed back to the image domain. 

Undersampling was introduced by retrospectively removing components from the Fourier 

transform of the images.  While any pattern of under-sampling could have been arbitrarily 

used (e.g., Poisson disc, radial, etc.)  in this work we used the CIRcular Cartesian 

UnderSampling pattern (CIRCUS) [71]. Undersampled images were reconstructed with 

the BART toolbox [42] wavelet regularization with a regularization weight of 0.01. The 

undersampling factor controlled the strength of this degradation. Finally, wavelet 

compressed images were generated by applying a global threshold of a specified value to 

the wavelet transform of the reference image. Wavelet transforms were generated for four 

levels with sym8 type wavelets.  

3.2.2 Objective IQMs 

Ten full-reference objective IQMs were included in this study: RMSE, PSNR, SSIM, 

 

Figure 3.2: Five degradations applied to a 512x512 T2 PROPELLER image of the brain. (a) 

Reference image. (b) White noise (σ =0.04). (c) Gaussian blur (σ = 3). (d) Motion (percent shift = 

6). (e) Undersampling (R = 8) with CS reconstruction. (f) Wavelet compression (threshold = 0.2). 

© 2019 IEEE. 
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MSSSIM, IWSSIM, GMSD, FSIM, NQM, VIF and HDRVDP v2. Other IQMs have been 

proposed in the literature, but these metrics were chosen for their prevalence and 

performance in other imaging studies as well as ease of implementation for diagnostic 

images. A brief description of each of these metrics is given in Section 2.5. 

3.2.3  Radiologist Image Quality Assessment 

Three body radiologists and two neuro radiologists were involved in the study. The 

radiologists scored only images from their subspecialties, using a 1-5 Likert scale.  The 

radiologists were asked to rate the diagnostic quality of the images with respect to 

delineation of relevant anatomy and ability to confidently exclude a lesion on a 5-point 

scale as follows:  excellent diagnostic quality (5), good diagnostic quality (4), fair 

diagnostic quality (3), poor diagnostic quality (2), and non-diagnostic (1). This scale was 

calibrated by consensus of radiologists in each subspecialty based on a training set to span 

the full range of quality of the images. The training set consisted of three reference MR 

images (different from those in the testing set) and degraded images generated by applying 

each degradation technique to each reference at two representative strengths. All judgments 

of quality were made in their opinion as diagnostic radiologists (e.g. their ability to 

discriminate relevant tissues, their confidence in using the image to detect, or in this case 

not detect, pathology, etc.). All subsequent scoring was performed individually. Agreement 

between radiologists scores were calculated using Cohen’s kappa with quadratic weighting 

[72]. 

3.2.4  Data Analysis 

The scores for the radiologists were not evaluated in their raw form. To account for 

potential differences in quality of each reference image, raw scores were converted first to 
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a difference score: 

𝐷𝑚𝑛 = 𝑠𝑚,𝑟𝑒𝑓 − 𝑠𝑚𝑛, (3. 1) 

where 𝐷𝑚𝑛 is the difference score for the 𝑚𝑡ℎ radiologist on the 𝑛𝑡ℎ degraded image, 𝑠𝑚,𝑟𝑒𝑓 

is the raw score of the 𝑚𝑡ℎ radiologist for the reference image corresponding to the 𝑛𝑡ℎ 

degraded image, and 𝑠𝑚𝑛 is the raw score of the 𝑚𝑡ℎ radiologist on the 𝑛𝑡ℎ degraded image. 

These scores were then converted to a z-score to account for differences in mean and 

standard deviation for each radiologist: 

𝑧𝑚𝑛 =
(𝐷𝑚𝑛 − 𝜇𝑚)

𝜎𝑚

(3. 2) 

where 𝜇𝑚 and 𝜎𝑚 are the mean and standard deviation of the difference scores of the 𝑚𝑡ℎ 

radiologist. This converts all the scores for each radiologist to a zero mean, unit standard 

deviation distribution. The z-scores from each radiologist were then averaged and rescaled 

from 0-100. 

The Spearman rank order correlation coefficient (SROCC) was calculated between the 

transformed radiologist scores and each of the IQM scores. The SROCC is equivalent to a 

linear correlation coefficient on the rank order of the data. A higher SROCC would then 

correspond to a better performing IQM. This metric was used because of the nonlinear 

relationship between subjective scores and objective IQM scores [73] (visible in Figure 

3.3). 

Correlations were calculated under three scenarios: when scores were divided by 

individual radiologists, by image type, and by degradation type. For the first division, 

SROCCs were calculated between an individual radiologist’s scores and the IQM scores 

of the images they scored. This division also includes a “combined” group, which averages 
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all radiologists’ scores for each image in the study. The image type division presents 

SROCCs for each group of reference image. The radiologists’ scores for images in each 

group are averaged and the SROCC is calculated with the corresponding IQM scores. 

Finally, images are grouped by degradation type where all images degraded by a particular 

technique are grouped and the SROCC is calculated. The sizes of each group are described 

in Table 3.2. 

A variance-based hypothesis test was performed to measure statistical significance in the 

difference in the performance of the IQMs. First, a non-linear regression was performed 

on the IQM scores according to the equation: 

𝑄𝑝 = 𝛽1 (
1

2
−

1

1 + exp(𝛽2(𝑄 − 𝛽3))
) + 𝛽4𝑄 + 𝛽5, (3. 3) 

where 𝑄 are the original IQM scores and 𝛽 are the model parameters [73]. The residuals 

between the IQM scores after the regression and the radiologists scores were calculated 

and Gaussianity was confirmed by measuring the kurtosis of the residuals. Residuals with 

Table 3.2: Information about each group of images in the testing set for each of the three 

subdivisions used for analysis. N is the number of images in each group. For groups in which some 

images received different numbers of ratings, the number in parenthesis in the ratings per image 

column is the number of images rated by the accompanying number of radiologists, i.e. 36 images 

degraded by white noise were rated by 3 radiologists and the other 36 were only rated by 2 

radiologists. © 2019 IEEE. 

By radiologist  By degradation type  By image type 

Image group N 
Ratings per 

image 
 

Image 

group 
N 

Ratings per 

image 
 Image group N 

Ratings per 

image 

Combined 414 
3(189) or 

2(225) 
 White 

Noise 
72 3(36) or 2(36)  T1 Flair 75 2 

Body Rad 1 189 1  
Gaussian 

Blur 
72 3(36) or 2(36)  T1 GRE (post) 63 3 

Body Rad 2 189 1  Motion 36 2  T1 GRE (pre) 63 3 

Body Rad 3 189 1  
Rician 
Noise 

72 3(36) or 2(36)  T2 Flair 75 2 

Neuro Rad 1 225 1  Undersample 72 3(36) or 2(36)  
T2 PROP 

(brain) 
75 2 

Neuro Rad 2 225 1  Wavelet 72 3(36) or 2(36)  
T2 PROP 

(body) 
63 3 
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a kurtosis between 2 and 4 were taken to be Gaussian (97% were found to be Gaussian). 

To test for statistical differences in the variance of residuals an F-test of equality of 

variances was performed, with the null hypothesis being that the residuals of two IQMs 

come from distributions of equal variance (with 95% confidence). Since each IQM was 

compared to all nine other IQMs, a Benjamini-Hochberg correction for false discovery 

rate controlling was performed [74]. An IQM performed statistically better than another 

IQM if the variance of its residuals was statistically less than the variance of the residuals 

of the other IQMs. 

3.2.5 IQM Calculation Times 

The time required by various IQM algorithms to calculate a quality score is also of 

interest to researchers looking to adopt these metrics. To measure this, we repeatedly 

calculated all IQMs for all body images (512x512, N = 189). Timing calculations were 

performed in MATLAB 2017b running on a 24 CPU Linux research server (Intel X5650, 

2.67GHz). 

3.3 Results 

Figure 3.3 shows the radiologists’ scores versus each IQM for the “combined” subgroup, 

which is the combination of all images and all radiologist scores. The data is sub-divided 

by degradation type. The IQMs are ordered by decreasing average SROCC when the data 

is broken up by each radiologist. This order is kept throughout all results for consistency. 

As shown in Figure 3.3, all IQM scores demonstrated a trend to improve (decrease for 

RMSE and GMSD, increase for all others) as radiologists’ image quality scores increase. 

However, a varying strength of this trend is seen among IQMs. The sensitivities of each of 

the IQMs to different degradation types can also be clearly seen. The weighted kappa 
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between radiologists who rated the same set of images is presented in Table 3.3. The 

distribution of radiologists scores is shown in Figure 3.4. 

The SROCC of each IQM with each radiologist’s scores are shown in Figure 3.5. This 

ordering of the IQMs show the decreasing correlations of the IQMs with the radiologist 

scores in each subgroup. Note that RMSE and SSIM are among the metrics with the lowest 

SROCC. Overall, VIF had the highest SROCC values. Results of the hypothesis testing on 

the variance in the residuals for each IQM in each subgroup are shown in Table 3.4. The 

sorted IQMs show that for many of the radiologists in the study, VIF, FSIM, and NQM 

perform statistically better than the other IQMs included in the study. SSIM did not perform 

 

Figure 3.3: Relationship between subjective radiologist score and IQMs for the full image library 

(414 images). Images are sorted by degradation type. The fit is calculated on all images using the 

non-linear regression in equation 3.3. © 2019 IEEE. 

Table 3.3: Weighted Cohen’s kappa for scores between radiologists rating the same set of images. 

© 2019 IEEE. 
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statistically better than any another IQM including RMSE. When dividing data by 

reference image type, similar results were obtained (Figure 3.5). The same metrics 

demonstrated higher correlation with radiologists’ scores. The statistical differences in 

performance based on the variance in the residuals of IQMs also demonstrated a similar 

 

Figure 3.4: Histogram showing the distribution of radiologist scores. 

 

 

Figure 3.5: Spearman rank order correlation coefficient for each IQM when data is divided by 

radiologist (top), reference type (middle), or degradation type (bottom). © 2019 IEEE. 
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behaviour (Table 3.5). The fewer significant differences is likely due to fewer images in 

each subgroup.  When dividing the data by degradation type, the variation in SROCC 

between IQMs is less clear (Figure 3.5). This lack of variation is shown by the small 

number of statistically different performance of the IQMs (Table 3.6). NQM appears to 

Table 3.4: Statistical significance in residuals of IQM scores after regression and radiologists scores 

(significance level = 0.05 with Benjamini-Hochberg correction for multiple comparisons) when 

data is broken up by radiologist. A ‘1’ means the IQM performed statistically better than the IQM 

of the column. A ‘0’ means it was statistically worse. A ‘-’ means no significant difference. The 

order of the sub-elements is: combined, body radiologist 1, body radiologist 2, body radiologist 3, 

neuroradiologist 1, and neuroradiologist 2. © 2019 IEEE. 

 

Table 3.5: Statistical significance in residuals of IQM scores after regression and radiologists scores 

(significance level = 0.05 with Benjamini-Hochberg correction for multiple comparisons) when 

data is broken up by reference image type. A description of the table format is provided in Table 

3.4. The order of the sub-elements is: T1 Flair (brain), T1 LAVA-Flex (post-contrast, liver), T1 

LAVA-Flex (pre-contrast, pancreas), T2 Flair (brain), T2 Propeller (brain), T2 Propeller (prostate). 

© 2019 IEEE. 

 



61 

 

perform particularly well for images degraded by noise as it has a statistically better 

performance than all other IQMs except FSIM for these images. IWSSIM performed 

poorly for images degraded by undersampling artifacts, showing statistically larger 

residuals compared to all other IQMs for these images. The hypothesis tables are not 

perfectly symmetric due to the due to the Benjamini-Hochberg corrections for multiple 

comparisons. 

The calculation times of the IQMs are shown in Table 3.7. The simple and rapid 

algorithms of RMSE, PSNR, and GMSD demonstrate short calculation times (all less than 

2 seconds). SSIM and MSSSIM have slightly longer calculation times (less than 20 

seconds) and FSIM, NQM, and IWSSIM are longer still (less than 45 seconds). The VIF 

Table 3.6: Statistical significance in residuals of IQM scores after regression and radiologists scores 

(significance level = 0.05 with Benjamini-Hochberg correction for multiple comparisons) when 

data is broken up by degradation type. A description of the table format is provided in Table 3.4. 

The order of the sub-elements is: Gaussian noise, Gaussian blur, motion, Rician noise, 

undersampling, and wavelet compression. © 2019 IEEE. 

 

Table 3.7: Time for calculations in seconds of each metric for all body images (resolution: 512x512, 

N = 189). © 2019 IEEE. 
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(241±6seconds) and HDRVDP (403±5seconds) IQMs are shown to have the longest 

calculation times of the metrics in this study.  

3.4 Discussion 

The results of this study may have important implications for researchers who are 

developing MR image acquisition and reconstruction techniques and using objective IQMs 

to test, validate and/or optimize their techniques. Recently, SSIM has gained popularity as 

a complement to RMSE as the IQM of choice in imaging studies, with the underlying 

assumption that it provides a more accurate measure of image quality. However, the results 

of this study demonstrate that, in the retrospectively degraded images used, SSIM does not 

show a significantly stronger correlation with radiologist opinion of diagnostic image 

quality than RMSE, and that there are other objective IQMs that perform better. This does 

not imply that previous studies that use RMSE or SSIM are invalid, since RMSE and SSIM 

were still seen to correlate with radiologists’ scores, but that there exist other metrics that 

may provide a more accurate measure of diagnostic image quality. 

When considering the trends in Figure 3.3 and the bottom of Figure 3.5, it appears as if 

the factor that most affects IQM performance is how uniformly the IQM quantifies the 

quality of images with different degradations. For instance, in Figure 3.3 VIF shows 

substantial overlap of all degradation techniques, but as one progresses through the metrics, 

the distributions of images degraded with different degradation techniques in the Rad 

Score-IQM plane become much more distinguishable. One can clearly discern the 

distributions of different degradation techniques for IQMs such as PSNR or RMSE. In the 

extreme case of SSIM, a bimodal distribution appears between the noise and other 

degradations. As seen in Figure 3.5, when the images are divided by degradation type, each 
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IQM has a similar average SROCC with the radiologists score. It is only when the different 

degradations are grouped together that the clear differences in performance of IQMs arise. 

This is important to notice because, as discussed in the Motivation of this Chapter, an IQM 

should correlate with radiologists’ opinion over a range of degradations. This also shows 

how choice of degradation types and strengths can affect the results of studies of this nature. 

After normalizing each radiologist’s score and combining scores across all images, we 

found that VIF exhibited the highest SROCC of all the metrics evaluated in this study. 

These results suggest that VIF provides the most accurate surrogate measure of subjective 

image quality scores of a radiologist of the IQMs included in this study. VIF is unique 

among IQMs in this study in that it generates a quality score based on shared information 

between the reference image and the distorted image, instead of generating a score from an 

algorithm based on some definition of signal fidelity. In VIF, the information in the 

reference image is calculated from natural scene statistics. The distorted image is modelled 

as the reference image passed through a distortion channel. The VIF is found from the 

information remaining in the degraded image from the reference image. It should be noted 

that VIF is designed with natural scene statistics, not medical image statistics, indicating 

an area of potential future research. 

FSIM and NQM also consistently demonstrated high correlations with the radiologist 

scores. Indeed, NQM had performed statistically better than VIF for images degraded with 

Gaussian noise, undersampling, or wavelet compression. This is consistent with other 

similar studies of MR images [65,66]; however, a key distinction between these studies 

and ours is that we correlated with the image quality scores of expert radiologists instead 

of non-experts. For Renieblas et al. [68], who did use expert raters, moderate agreement in 
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SROCC was found from IQMs used in both our study and theirs (SSIM: 0.54 versus 0.44; 

MSSSIM: 0.63 versus 0.60). Differences are likely due to differences in degradation 

techniques/strengths, as well as variability in the subjective scoring by experts. 

For all IQMs, there is significant variation in the radiologists scores for a particular value 

of the IQM (Figure 3.5). For example, in images that had an averaged scaled radiologist 

score of 50, the VIF ranged from 0.30-0.68. Similar trends can be seen in the results of 

Chow et al. [66]. This highlights the difficulties in using IQMs as a replacement for manual 

scoring of image quality, since there will always be variability in the manual scoring and 

the IQMs and radiologists may have different sensitivities or preferences for different 

forms of degradation. As machine learning algorithms advance, it is possible they may be 

able to learn this sensitivity and preferences in ways objective IQMs cannot. 

There are some aspects of our study which may limit the generalizability of our results. 

First, we limited the scope of this study to ten objective IQMs. Since many IQMs exist 

beyond those studied here, including all of them would not be feasible. It is possible that a 

metric not included in this study could exist or be developed that demonstrates a higher 

correlation with radiologists’ scoring of image quality than any of the IQMs we evaluated. 

We also limited our choice of IQM to full-reference IQMs because these are most 

commonly used for the validation of imaging techniques. Full-reference IQMs allowed us 

to use retrospectively degraded images, which adds more control to the study, but may add 

artificiality to the degraded images and limit the generalizability of the results in practice. 

A similar study with no-reference IQMs may also be considered, particularly for techniques 

that wish to assess the diagnostic quality of MR images on the scanner as part of a built-in 

quality assurance system. The present study only included data from brain images and body 
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images, but presented both independently and together, which allows for the interpretation 

of the data for specific applications. However, our results may not be generalizable to other 

MRI systems, anatomical regions, or even different MRI sequences. Finally, it should be 

noted that the scoring of diagnostic quality in a “clinically normal” MR image is strongly 

related to but not necessarily equivalent to scoring of an image containing pathology.  Our 

current work focused on clinically normal images – a critical first step in determining if 

IQMs developed for non-experts rating natural images would also correlate with 

radiologists rating diagnostic quality of MR images – which will inform future task-based 

studies examining whether these same IQMs correlation with other measures such as lesion 

conspicuity scores in images containing pathology. 

3.5 Conclusions 

We measured the correlations between 10 full-reference objective IQMs and the 

subjective image quality score of five subspecialty radiologists. When considering images 

divided by reference location or combining all images in the study, SSIM and RMSE 

demonstrated statistically worse performances than other metrics evaluated, suggesting 

that SSIM and RMSE are potentially not ideal surrogate measures of MR image quality as 

determined by radiologist evaluation. The VIF, FSIM, and NQM demonstrated the highest 

correlation with radiologists’ opinions of MR image quality. However, these metrics come 

at the cost of longer calculation times, which may influence their use in future research. 

Differences in the performances of the IQMs were also largely lost when images are 

divided by degradation type.  Both the IQM SROCC values and calculation times presented 

in this study should be considered in future imaging studies applying an objective IQM to 

assess the quality of an MR image, for example in studies evaluating novel image 
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reconstruction algorithms. These data also highlight the importance of the ongoing 

development of techniques for automatic and objective assessment of image quality. 

  



67 

 

 

Chapter 4: An IQM-Based Heuristic for Accurate 

Pharmacokinetic Parameter Measurement in DCE MRI 
 

4.1 Motivation 

The PI-RADS v2 steering committee recommends the temporal resolution of DCE MRI 

be at least 10 seconds and preferably less than seven seconds [10]. Technically this is not 

difficult to achieve, however without advanced image reconstruction techniques the quality 

of the reconstructed image will be unacceptable. The choice of temporal resolution will not 

just affect the visual assessment of the DCE scan, it can introduce bias into the recovered 

PK parameters [75]. Standard DCE imaging techniques acquire data at a fixed temporal 

resolution that cannot be altered once it is acquired. This is an impersonal technique that 

does not allow for any optimization of temporal resolution on a patient-by-patient basis. 

 Golden angle radial sampling with a sliding window reconstruction allows for multiple 

reconstructions of the same data set with arbitrary temporal resolution. This technique 

allows for a high degree of flexibility during reconstruction because the different temporal 

resolution reconstructions could be optimized for different purposes. For instance, one 

could be optimized for visibility of the early signal enhancement in the image series, one 

could be optimized for input into a machine learning algorithm, and one could be optimized 

for accurate PK modelling. This chapter focuses on the third scenario: optimizing the 

temporal resolution of DCE MRI scan for accurate PK modelling. 

The work presented in this chapter extends previous work done in our group that looked 

at the relationship between image quality and accuracy of recovered function parameters 

(e.g. amplitude) of simulated  sinusoidal and exponential functions [39]. That work utilized 
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simulations in a numerical phantom in MATLAB that could simulate a DCE scan while 

certain features of the phantom evolved by the exponential and sinusoidal functions. Using 

a golden angle-based sampling pattern, the DCE data could be reconstructed with arbitrary 

temporal footprint1.  Since the ground truth function parameters were known exactly, it 

was possible to measure the effect of temporal footprint on the error of the recovered 

parameters. Further, since a ground truth of reference image was known, it was possible to 

study the relationship between the accuracy of the recovered function parameters and the 

image quality as defined by full-reference objective IQMs. A correlation was found 

between the recovered function parameters and the IQMs tested in the study (RMSE and 

SSIM).  

The current work extends these simulations to model the more physiologically relevant 

Tofts model using golden angle radial sampling with sliding window reconstruction. 

Ultimately, the goal of this work is to develop a technique that allows one to automatically 

chose a temporal footprint that maximizes PK parameter modelling accuracy on a patient-

by-patient basis. Based on the correlation between IQMs and the function parameter 

accuracy of the previous study, we hypothesize that IQMs can be used to automatically 

choose a temporal footprint in DCE MRI that optimally balances the trade-off between 

temporal footprint and image quality to maximize PK parameter accuracy. 

4.2 Methods 
 

The simulations in this study make use of a numerical phantom originally created by 

Murtha et al. [39] (Figure 4.1) that runs in MATLAB. The matrix size of the phantom is 

 
1 As discussed in Section 2.1.4, the term temporal footprint is used in place of temporal resolution due to the clearer definition when 

using a sliding window reconstruction technique. 
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defined by the user. While the cross-sectional dimensions can independently be any size, 

the number of slices is fixed to 32. The phantom contains groups of rectangular prisms and 

concentric cylinders, however only the concentric cylinders are used in these experiments. 

The cylinders are grouped together into objects called features. The feature contains all 

relevant information for the simulations including the indexed location of the feature, the 

signal enhancement curve, and its imaging parameters. For the concentric cylinders in each 

slice there are five features: all the outer cylinders in the slice (shown in orange in Figure 

4.1a) form a single feature and all the inner cylinders (shown in yellow in Figure 4.1a) of 

each row form an individual feature. All results in this chapter are shown for a 150x150 

cross-sectional phantom. For this size, the outer cylinders were 12 pixels in radius, and the 

inner cylinders are 7, 5, 4, and 2 pixels in radius.  

The outer cylinder feature and the top three inner cylinder features of each slice was 

defined to evolve according to the extended Tofts model (equation 2.25), repeated here: 

𝐶𝑡(𝑡) = 𝑣𝑝𝐶𝑝(𝑡) + 𝐾𝑡𝑟𝑎𝑛𝑠 ∫ 𝐶𝑝(𝑡
′) exp (−

𝐾𝑡𝑟𝑎𝑛𝑠

𝑣𝑒

(𝑡 − 𝑡′))𝑑𝑡′
𝑡

0

, (4.1) 

 

 

 (a) (b) 

Figure 4.1: Visualization of numerical phantom used in simulations. (a) Three-dimensional 

rendering of the phantom. (b) Cross-sectional view through a plane of cylinders. 
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where 𝐶𝑝 is the contrast agent concentration in blood plasma, and  𝐾𝑡𝑟𝑎𝑛𝑠, 𝑣𝑝, and 𝑘𝑒𝑝 are 

the PK parameters that are used to fit the model (See Section 2.4.3). The AIF is equivalent 

to 𝐶𝑝(𝑡) after correcting for the hematocrit, which was equal to 0.4 in these simulations. In 

these simulations the bottom row of cylinders of each slice simulated an AIF that was 

calculated from the empirical model created by Parker et al. [76]. The simulated signal 

𝑆(𝑡) in each feature is calculated from 𝐶𝑡(𝑡) using equations 2.30 and 2.26. In these 

simulations (𝑇10)𝑏𝑙𝑜𝑜𝑑 = 1660 msec, (𝑇10)𝑡𝑖𝑠𝑠𝑢𝑒 = 1500 msec, 𝑟1 = 3 s−1mmol−1, TR = 

5 msec, 𝛼 = 12°, and 𝑘 = 𝑀0 = 1. If a voxel was simulating the AIF, (𝑇10)𝑏𝑙𝑜𝑜𝑑 is used 

for calculating 𝑆(𝑡), otherwise (𝑇10)𝑡𝑖𝑠𝑠𝑢𝑒 is used. For features simulating tissue, 𝑣𝑒 and 

𝑣𝑝 were fixed at 0.2 and 0.02 respectively. For the outer cylinders, 𝐾𝑡𝑟𝑎𝑛𝑠 was set to 

0.1/min always. The remaining nine rows of inner cylinders had 𝐾𝑡𝑟𝑎𝑛𝑠 values between 

0.1/min and 0.5/min in steps of 0.05/min. 

The k-space for the simulated DCE data was generated using a golden angle stack-of-

stars sampling pattern with a single channel of uniform spatial sensitivity. One ray in k-

space was collected per TR. To collect each ray, the phantom was Fourier transformed by 

using the nufft command in BART. The signal intensities for the phantom were then 

calculated a time TR later and the process was repeated for the duration of the simulated 

scan. All simulations created the equivalent of 120 seconds of DCE data. 

Images were reconstructed from this data using a sliding window reconstruction, where 

the rays per frame determines the temporal footprint, which is the amount of time over 

which this section of rays was collected. Unless otherwise stated, all images were 

reconstructed with no overlap. Each group of rays was reconstructed independently to 

create each frame in the time series of images. For these experiments, images were 
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reconstructed with between 7 and 69 rays per frame in increments of two. The equivalent 

temporal footprints are between 1.12sec and 11.03sec in steps of 0.32sec. The timestamp 

for each image in the series was the average of the times at which each of the constituent 

rays for that image were collected. All images were reconstructed using the pics 

command of the BART toolbox. All images were reconstructed with wavelet regularization 

with a regularization weight of 0.05. 

PK parameter recovery from the reconstructed images was performed on a voxel-by-

voxel basis. The value of 𝑆(𝑡)  from a voxel is recovered from the intensity of that voxel 

in the time series of reconstructed images. First, 𝑆(𝑡) is converted back to 𝐶𝑡(𝑡) by 

inverting the SPGR equation. PK parameters are extracted from the recovered 𝐶𝑡(𝑡) data 

by fitting it to equation 4.1 via a least squares fitting algorithm [77]. This was done for two 

choices of AIF since there is still no widely accepted technique for finding the AIF in 

practice. The first was using a “population AIF”, where the Parker AIF was recalculated 

for the time points of each image in the series. The second was a “simulated AIF” where 

the AIF used for fitting was also recovered from the simulated data by extracting the signal 

enhancement curve for the bottom row of cylinders, which were defined to evolve 

according to the Parker AIF. 

Two image quality metrics were calculated for the reconstructed images in these 

experiments: the RMSE and the SSIM [34]. These IQMs were calculated under two cases 

of reference image. The first reference case used the known values of the numerical 

phantom as reference. For each time in the series of reconstructed images, the true value 

of the phantom was recalculated at that time. The IQMs were calculated between the 

phantom at that time and the corresponding frame then averaged over all frames in the 
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series. However, this approach is not realistic in practice because a known ground truth 

does not exist in clinical MRI. The second case generated the reference from the simulated 

DCE data. This was accomplished by combining all rays collected during the final 30 

seconds of the simulated scan. This was equivalent to 188 rays. This section of the scan 

was chosen because the temporal dynamics of the contrast agent are much slower in this 

region. The IQMs were then calculated for each frame during this time interval then 

averaged. 

Additionally, similar simulations were performed with a phantom generated from a 3D 

clinical data set. The base 3D image was created by combining all rays from a 3D stack-

of-stars DCE scan of the prostate into a single frame. A five-slice thick feature was defined 

in the center of prostate. Like the numerical phantom, this feature was a pair of concentric 

cylinders (Figure 4.2). The outer shell and each slice of the inner cylinder were defined 

individually such that they could each have their own independent signal enhancement 

curves. As with the numerical phantom,  𝑣𝑒 and 𝑣𝑝 were set to 0.2 and 0.02 in all cases, 

respectively. The value of 𝐾𝑡𝑟𝑎𝑛𝑠 for the outer cylinder was 0.05/min. For the inner 

 

 

Figure 4.2: Cross-sectional view of the clinical data set used for the synthetic dynamic clinical 

simulations. This figure also shows the 𝐾𝑡𝑟𝑎𝑛𝑠 maps of the artificial tumour. The outer radius = 7 

pixels, inner radius = 6 pixels. 
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cylinder in each slice the value of 𝐾𝑡𝑟𝑎𝑛𝑠 increased from 0.1/min to 0.5/min in steps of 

0.1/min. The value of 𝑀0 for each voxel was defined such that the intensity with zero 

contrast agent would give the intensity of the voxel in the initial static image. A cylindrical 

region (radius = 2 pixels) in a nearby blood vessel was defined to simulate the AIF. Beyond 

this, the framework of these simulations was then the same as that of the numerical 

phantom. 

4.3 Results 

4.3.1 Numerical Phantom 

A representative set of images for reconstructions over the tested range of temporal 

footprints is shown in Figure 4.3. The images shown are the frame in each respective 

reconstruction closest to 20 sec after the start of the simulated scan, which is approximately 

when the peak of the AIF occurs. The contrast between the increased signal due to the 

higher 𝐾𝑡𝑟𝑎𝑛𝑠 values of the inner cylinders in the top three rows is visible. The increased 

 
Figure 4.3: Representative set of images reconstructed from 150x150 numerical phantom (rpf 

= rays per frame). 
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signal intensity of the AIF is also visible in the bottom row. Note that even for the images 

with a large temporal footprint, the sharp edges of the numerical phantom are still blurred. 

Beyond a temporal footprint of approximately 8 seconds (50 rays per frame), the values of 

the IQMs begin to reach a plateau (Figure 4.4). This is observed for both the IQMs tested 

and both cases of reference.  

A systemic bias was observed in the error of the recovered 𝐾𝑡𝑟𝑎𝑛𝑠 values depending on 

choice of temporal footprint size (Figure 4.5). The trends are consistent across all 𝐾𝑡𝑟𝑎𝑛𝑠  

values tested. The systemic bias when PK parameters are recovered with the population 

AIF (Figure 4.5a) can be broken into three regions. At small temporal footprints, the value 

of 𝐾𝑡𝑟𝑎𝑛𝑠 is systemically underestimated. At large temporal footprints, the value of 𝐾𝑡𝑟𝑎𝑛𝑠 

is systemically overestimated. However, in between these two extremes there is a region 

 

Figure 4.4: The average RMSE and SSIM of image series generated with different temporal 

footprints for both a data generated reference and the numerical phantom as reference. 
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(between a temporal footprint of approximately 4 and 8 seconds) where the recovered 

𝐾𝑡𝑟𝑎𝑛𝑠 value is stable with error consistently less than 10%. Similar trends are observed 

for the 𝐾𝑡𝑟𝑎𝑛𝑠 values recovered with the simulated AIF (Figure 4.5b). However, the two 

  
(a) (b) 

  
 (c) (d) 

 
 (e) 

Figure 4.5: Results of numerical 

phantom simulation. Error in recovered 

𝐾𝑡𝑟𝑎𝑛𝑠 value for numerical phantom 

simulations with a (a) population or (b) 

simulated AIF. (c) Representative time 

courses for different temporal footprint 

reconstructions. Representative (d) 

population or (e) simulated AIFs for 

reconstructions with different temporal 

footprints. 
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data sets differ at small temporal footprints (less than ~4 sec).  

4.3.2 Heuristic for Finding Optimal Temporal Footprint 

The relationship between the recovered 𝐾𝑡𝑟𝑎𝑛𝑠 value and the RMSE/SSIM score of each 

of the reconstructed images of the numerical phantom is shown in Figure 4.6. Although the 

value of the temporal footprint is not shown explicitly in this figure, as the temporal 

footprint increases the IQMs move monotonically towards their optimal value (i.e. 

increasing for SSIM and decreasing for RMSE). For the small temporal footprint/highly 

undersampled images the IQMs are far from their optimal values. As the temporal footprint 

increases, the IQMs move towards their optimal values and the recovered 𝐾𝑡𝑟𝑎𝑛𝑠 value 

initially becomes more accurate as well. At the large temporal footprints, the 

overestimation of the 𝐾𝑡𝑟𝑎𝑛𝑠 values are again clear, but the IQMs stop changing. Clearly 

discernible in these plots is a vertical wall where the IQM does not pass. This corresponds 

to the temporal footprints where the image quality is “saturated” as discussed with Figure 

4.4. Importantly, the base of the wall is located at the region of temporal footprints for 

 

Figure 4.6: Relationship between recovered 𝐾𝑡𝑟𝑎𝑛𝑠 value and SSIM (left)/RMSE (right). Each 

marker corresponds to a reconstruction with a different temporal footprint. Shown here are the 

recovered values for the feature with 𝐾𝑡𝑟𝑎𝑛𝑠 = 0.2/min. 
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which the 𝐾𝑡𝑟𝑎𝑛𝑠 could be recovered consistently within 10% of the true values for the 

feature.  

Thus, a technique to find the temporal footprint that corresponds to the base of this wall 

would allow one to locate a temporal footprint that can accurately recover the 𝐾𝑡𝑟𝑎𝑛𝑠 

values. A heuristic for consistently finding this temporal footprint can be described in the 

following steps: 

1. Begin at a sufficiently large temporal footprint where 𝐾𝑡𝑟𝑎𝑛𝑠 is overestimated 

(approximately 10 sec). 

2. Reconstruct images at this temporal footprint and calculate the IQM of the 

reconstructed image series. 

3. Decrease the temporal footprint. Reconstruct the images at this new temporal 

footprint and recalculate the IQM. 

4. Repeat step 3 until the IQM of the reconstructed image changes significantly. 

The choice of how to quantify a significant change in the IQM can be difficult to 

determine in a rigorous way, but we have found empirically that a threshold of the initial 

IQM score less twice the standard deviation in the initial reconstruction has been sufficient. 

This heuristic was tested on the same simulated k-space data that was used to generate 

the results in Figures 4.3 – 4.6. The initial reconstruction was performed at a temporal 

footprint of 11 sec and each subsequent reconstruction was performed by decreasing the 

temporal footprint by 0.5 sec at each iteration. Once the IQM dropped below the threshold, 

the algorithm would stop. The results are shown in Figure 4.7, which uses SSIM as the 

figure of merit. As can be seen in Figure 4.7a, the SSIM initially remains flat. On the eighth 

iteration (corresponding to a temporal footprint of 7.5 sec), the SSIM drops below the 



78 

 

defined threshold and the algorithm stops. The corresponding 𝐾𝑡𝑟𝑎𝑛𝑠 values of each 

iteration are shown in Figure 4.7b. The algorithm was able to recover the 𝐾𝑡𝑟𝑎𝑛𝑠 values of 

each of the features in the simulation to within 10% of their true values. Results are only 

shown using SSIM as the figure of merit, but the same results can be achieved using RMSE. 

The algorithm does require sufficient SNR to work properly (see Figure 4.8). For low 

SNR, the IQM will fall below the target threshold even at a large temporal footprint, 

leading to overestimation of the 𝐾𝑡𝑟𝑎𝑛𝑠 value. However, this is unlikely to be an issue at 

clinically relevant SNR values (SNR > 5). 

4.3.3 Effect of Overlapping Frames 

The results of using a 50% overlap during sliding window reconstruction are shown in 

Figure 4.9. For the population AIF recovered 𝐾𝑡𝑟𝑎𝑛𝑠 values, the main difference between 

the 50% overlap data and no overlap is that the overestimation at large temporal footprints 

is much less drastic for the 50% overlap data (Figure 4.9a). However, this is not the case 

when the simulated AIF is used (Figure 4.9b), where a large positive bias is still observed. 

 

Figure 4.7: Results of applying the heuristic to find an appropriate temporal footprint for 

accurate 𝐾𝑡𝑟𝑎𝑛𝑠 recovery with the numerical phantom. The first iteration has a temporal 

footprint of 11 sec and all subsequent iterations decrease the temporal footprint by 0.5sec. The 

dashed line on the SSIM plot (left) is the cut-off for the algorithm. A simulated AIF was used 

to calculate the 𝐾𝑡𝑟𝑎𝑛𝑠 values. 
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When applying the heuristic to the 50% overlap data using the simulated AIF, all 𝐾𝑡𝑟𝑎𝑛𝑠 

values are recovered within 10% of their true values (Figure 4.9d). Compared to the 

noiseless no overlap data, the average error was slightly less in the 50% overlap data 

(average absolute error 1.83% vs 5.15%). 

4.3.4 Dynamic Synthetic Clinical Data 

The results are also consistent in the synthetic dynamic clinical data. The relationship 

between the 𝐾𝑡𝑟𝑎𝑛𝑠 error and the temporal footprint for this data set is shown in Figure 

4.10. For the 𝐾𝑡𝑟𝑎𝑛𝑠 values recovered with the population AIF, the same three regions are 

         
 (a) (b) 

    
 (c) 

Figure 4.8: Results of applying the 

heuristic to numerical phantom k-space 

corrupted by noise. Reconstructions start 

at 11sec temporal footprint and decrease 

by 0.5sec at each iteration. (a) SSIM of 

each iteration. (b) Percent error in 

recovered 𝐾𝑡𝑟𝑎𝑛𝑠 value. (c) Percent error 

of recovered 𝐾𝑡𝑟𝑎𝑛𝑠 at optimal temporal 

footprint found for different SNR. All 

results shown for true 𝐾𝑡𝑟𝑎𝑛𝑠 = 0.2/min. 
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visible as in the numerical phantom: negative bias at a small temporal footprint, positive 

bias at the large temporal footprint, and a region of stability in the middle. However, 

different from the numerical phantom data, there is significant positive bias in the 𝐾𝑡𝑟𝑎𝑛𝑠 

at low temporal footprint when the simulated AIF is used for curve fitting.  

Applying the heuristic to the synthetic clinical data set also achieves successful results 

(Figure 4.10 c and d). The algorithm ended after 6 iterations and again all the tested 𝐾𝑡𝑟𝑎𝑛𝑠 

values were recovered within 10% of their true values. This corresponds to a temporal 

 
 (a) (b) 

 
 (c) (d) 

Figure 4.9: Effect of temporal resolution on 𝐾𝑡𝑟𝑎𝑛𝑠 error for numerical phantom data 

reconstructed with 50% overlapping of frames for curve fitting with (a) a population AIF and 

(b) a simulated AIF. The results of applying the heuristic to the data is shown in (c) and (d). 

Reconstructions start at 11sec temporal footprint and decrease by 0.5sec at each iteration. The 

simulated AIF data was used to calculate the 𝐾𝑡𝑟𝑎𝑛𝑠 values in (d). 
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footprint of 8.5 seconds. However, when looking at the SSIM of each iteration (Figure 

4.10c), no clear plateau is seen as was the case with the numerical phantom simulations. 

The threshold of twice the standard deviation less the initial SSIM still found an appropriate 

temporal footprint that recovered the 𝐾𝑡𝑟𝑎𝑛𝑠 values of the features within 10% of their true 

values. 

 
 (a) (b) 

 

 (c) (d) 

Figure 4.10: Percent error in recovered 𝐾𝑡𝑟𝑎𝑛𝑠 value for the synthetic dynamic clinical data set 

reconstructed with (a) population AIF and (b) simulated AIF. Results of applying the heuristic 

to this data is shown in (c) and (d). The first iteration has a temporal footprint of 11sec and all 

subsequent iterations decrease the temporal footprint by 0.5sec. The dashed line on the SSIM 

plot (right) is the cut-off for the algorithm.  
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4.4 Discussion 

In this work, an IQM-based heuristic for choosing a temporal footprint to maximize PK 

parameter accuracy in DCE MRI is presented. The heuristic is based on the observation 

that when using golden angle stack-of-stars sampling with sliding window reconstruction, 

the image quality as measured by IQMs reaches a plateau for temporal footprints above ~8 

sec depending on the image being reconstructed. It was found that at the temporal footprints 

just below this range a stable region occurred where the error in the recovered 𝐾𝑡𝑟𝑎𝑛𝑠 

values is minimized.  This led to the development of the heuristic that allows for tailoring 

of temporal footprint on a patient-by-patient basis by choosing a temporal footprint that is 

just below where the image quality plateau occurs. 

4.4.1 Image Quality Measurements 

The reason for the IQM plateau (Figure 4.4) is likely is because the marginal increase 

in k-space coverage tends towards zeros as more rays are combined. Without significant 

increase in k-space coverage there is no improvement in image quality and adding any 

additional rays only serves to increase the temporal footprint. It was also seen that the 

plateau of the IQMs calculated with the phantom reference is not as close to the optimal 

IQM value as when using the data-generated reference (optimal SSIM = 1; optimal RMSE 

= 0). The reason for this is because the phantom reference has artificially sharp edges that 

the reconstructed images cannot replicate, regardless of how many rays are combined into 

a single image. Since the data generated reference is itself an imperfect reconstruction of 

the numerical phantom, the reconstructed images can achieve IQMs much closer in 

magnitude to their optimal values for this case of reference. 
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4.4.2 Bias in Recovered 𝐾𝑡𝑟𝑎𝑛𝑠 Values 

The bias in the 𝐾𝑡𝑟𝑎𝑛𝑠 values with respect to temporal footprint can be broken into three 

regions in general: small temporal footprints (less than ~4 sec), large temporal footprints 

(greater than ~8 sec), and the region in between. The recovered 𝐾𝑡𝑟𝑎𝑛𝑠 was systemically 

overestimated at large temporal footprints, but for a range of temporal footprints below this 

recovered 𝐾𝑡𝑟𝑎𝑛𝑠 error was minimized. This was true for both phantoms, overlap factors, 

and types of AIF. The reason 𝐾𝑡𝑟𝑎𝑛𝑠 is overestimated at large temporal footprints is likely 

because of a loss of scale of the AIF due to a combination of low sampling rate and 

temporal smearing, a phenomenon akin to blurring but through the temporal dimension 

(Figure 4.5d,e). The decreased values of the AIF are compensated by an increased value of 

𝐾𝑡𝑟𝑎𝑛𝑠. This effect is minimized for the 50% overlap data with a population AIF. The 

overlap doubles the sampling rate of the AIF, which decreases its loss of scale. However, 

even with the increased sampling rate, a large positive bias is observed when the simulated 

AIF is used in calculations. While the increased overlap increases the sampling rate, the 

temporal footprint is still the same size. This means that the simulated AIF is still 

susceptible to temporal smearing, where the signal is averaged across a large period of 

time. The full width half maximum of the initial peak of the AIF is approximately 7.9 

seconds, so when the temporal footprint begins to exceed this width, the effect of temporal 

smearing will cause the intensity of the AIF to be decreased, resulting in a positive bias of 

the recovered 𝐾𝑡𝑟𝑎𝑛𝑠. 

Under all scenarios when the population AIF is used, the 𝐾𝑡𝑟𝑎𝑛𝑠 is systemically 

underestimated at small temporal footprints. This is likely due to a loss of scale of 𝐶𝑡 due 

to signal washout (Figure 4.5c). Since 𝐶𝑡 has a decreased intensity but the AIF does not 
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since it is recalculated, 𝐾𝑡𝑟𝑎𝑛𝑠 is underestimated during curve fitting to compensate. 

However, results at small temporal footprints are not as consistent when the simulated AIF 

is used. For the numerical phantom, there was minimum bias at low temporal footprints 

when the simulated AIF was used. A possible explanation is that since the simulated AIF 

comes from the same images as 𝐶𝑡, any artifacts or degradations, such as signal washout, 

in the recovered 𝐶𝑡 are also observed in the simulated AIF, which is recovered from the 

same data. For example, the AIF for the reconstruction with a temporal footprint of 1.11 

sec (Figure 4.5e) shows a similar decrease in signal as the corresponding 𝐶𝑡. The effect is 

balanced out and the systemic underestimation of 𝐾𝑡𝑟𝑎𝑛𝑠 is not observed. The 

overestimation of the feature with 𝐾𝑡𝑟𝑎𝑛𝑠= 0.1/min for this data (Figure 4.5b and Figure 

4.9b) is potentially due to signal wash in, due to the low signal intensity of that feature. The 

synthetic dynamic clinical data saw significant positive bias in 𝐾𝑡𝑟𝑎𝑛𝑠 for low temporal 

footprints. This is likely a combination of two factors that are different than in the 

numerical phantom simulations. First, the feature in which the AIF is defined is smaller 

than it was in the numerical phantom, which leads to more signal washout and thus a more 

significant loss of scale of the AIF intensity. This smaller AIF was required due to the size 

of the vessel in the base image. Second, the size of the feature in which the AIF is defined 

and the feature in which the Tofts model time course is defined are not the same. Thus, the 

equivalent effects from the undersampling are not present in both features as was the case 

with the numerical phantom. 

The region of stability was fairly large (~4 sec) in the numerical phantom data. This 

would suggest that finding a temporal footprint that minimizes 𝐾𝑡𝑟𝑎𝑛𝑠 error is not a difficult 

task. However, the stable region is not as broad in the synthetic dynamic clinical data 



85 

 

(Figure 4.10a). This motivated the need for the heuristic. This narrowing of the stable 

region is likely due to the increased complexity of the image, particularly in the region of 

the prostate where simulated features were defined. Due to the differences in 𝑀0 values, 

each voxel had a different signal enhancement curve even for the same PK parameters, 

which could lead to the larger error. This was not the case in the numerical phantom where 

𝑀0 = 1 for all voxels. 

4.4.3 The Heuristic 

For the numerical phantom and the synthetic dynamic clinical data tested the optimal 

temporal footprints found with the heuristic was 7.5 sec and 8.5 sec. The larger temporal 

footprint of the clinical dataset likely represents the increased heterogeneity of the image. 

Due to the relatively broad stable region, there are multiple temporal footprints that would 

have led to equally accurate 𝐾𝑡𝑟𝑎𝑛𝑠 recovery. However, since the algorithm is designed to 

find the temporal footprint that is closest to the IQM wall, it chooses the temporal footprint 

in the accurate 𝐾𝑡𝑟𝑎𝑛𝑠 recovery region that maximize image quality as defined by the 

chosen IQM. 

For both scenarios, the algorithm found a temporal footprint that is above the 7 seconds  

recommended by PI-RADS [10]. However, this is not necessarily a contradiction with the 

PI-RAD recommendations because these recommendations are interested in a different 

outcome than what this heuristic is optimized for. The heuristic presented here is designed 

for accurate PK parameter modelling, but the recommendations for PI-RADS is for 

visibility of early signal enhancement in cancerous tissue. This actually demonstrates one 

of the advantages of the golden angle stack-of-stars sampling with sliding window 

reconstruction technique over traditional fixed temporal footprint approaches: multiple 
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reconstructions are possible. One can perform one reconstruction at a temporal footprint 

that is optimized for PK parameter fidelity and another that allows for the visibility of early 

signal enhancement. 

There is another aspect of this research that seemingly contradicts another 

recommendation, one that was made in Chapter 3 of this thesis. In Chapter 3, it was found 

that RMSE/SSIM did not demonstrate the highest correlation with radiologists scoring of 

diagnostic image quality and are therefore not the most appropriate objective metrics for 

the scoring of MR image quality. The reason that RMSE and SSIM were able to be used 

for the work presented in the current Chapter is that, similar to the PI-RADS discussion, 

the goal was not to optimize image quality for radiologists’ visual assessment, but to 

optimize it for PK parameter modelling. Since the purpose of the images is different, the 

results from Chapter 3 are not transferable to this chapter. The only requirement is that the 

IQM must have a finite optimal value. For example, the optimal value of PSNR is infinite, 

so it would not be a suitable IQM for this heuristic. Without a finite optimal value, the wall 

at this value could not occur and the heuristic would not work because there would always 

be a change in IQM for different temporal footprints. 

The choice of whether to use frame overlap remains to be determined. Verma et al. [5] 

recommended as high a temporal resolution as possible for optimal curve fitting. While the 

results of applying the heuristic to the 50% overlap data resulted in smaller average 

absolute error across the 𝐾𝑡𝑟𝑎𝑛𝑠 values tested, it is not guaranteed that this will be the case 

in general. The reason for this is because the heuristic presented can only optimize temporal 

footprints over a fairly coarse step size of temporal footprints (0.5 sec). This, along with 

the noise that can be observed in the region of stability (Figure 4.5a) may cause the error 
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to be greater than any additional accuracy provided by the additional data points from the 

overlapping frames. It could be possible to perform the heuristic with a smaller temporal 

footprint step size; however, there is a risk positively biasing the recovered 𝐾𝑡𝑟𝑎𝑛𝑠 values. 

Since the heuristic starts at a large temporal footprint where 𝐾𝑡𝑟𝑎𝑛𝑠 is overestimated, a 

smaller step size would cut off at a larger temporal footprint then a large step size and thus 

more of the positive bias would remain. A potentially useful approach would be to apply 

the heuristic to data reconstructed with no overlapping, then, once an appropriate temporal 

footprint is found, reconstruct the images at this temporal footprint with 50% overlap (or 

more). This could provide additional accuracy as well as reconstruction speed since only 

half as many images would need to be reconstructed during optimization. 

The other PK parameters of the Tofts model have not been presented in the results here. 

This was decided in large part due to the popularity of 𝐾𝑡𝑟𝑎𝑛𝑠 among the PK parameters. 

It was also found during this work that the fitting algorithm was more sensitive to errors in 

𝐾𝑡𝑟𝑎𝑛𝑠 than errors in 𝑣𝑒 or 𝑣𝑝. This is likely due to the fact that 𝐾𝑡𝑟𝑎𝑛𝑠 directly affects both 

the scale and washout rate of 𝐶𝑡 as seen in equation 4.1, whereas 𝑣𝑒 and 𝑣𝑝 depend mostly 

on one or the other. For instance, since 𝑣𝑝 only affects the contribution of the AIF, which 

has rapid wash-in and wash-out rates, its effect to the overall signal is mostly present during 

the initial signal enhancement. More importantly, the small magnitude of 𝑣𝑝 means it 

contributes less to the shape of the curve and minor deviations from the true scale of 𝐶𝑡 can 

lead to large percent errors. The rate of contrast agent washout is controlled by the ratio of 

𝐾𝑡𝑟𝑎𝑛𝑠 and 𝑣𝑒. This is the only contribution of 𝑣𝑒 to 𝐶𝑡, so it is insensitive to changes to 

the initial signal enhancement, which is where a lot of the effects of the different temporal 

footprints manifest. 
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The SSIM values of the reconstructions at each iteration in Figure 4.7 vary over an 

exceedingly small range (approximately 0.01). This would correspond to an imperceptible 

difference in image quality to a human eye, however this change of image quality need not 

be detected by a human, only the IQM. IQMs are an appropriate tool for such small 

differences in image quality because, since many are designed for some definition of signal 

fidelity, they are monotonic relative to degradation strength on an individual reference 

image. In this study, there is an equivalence between temporal footprint and degradation 

strength because of the equivalence of temporal footprint and undersampling factor. Thus, 

one would expect to see a monotonic relationship between and IQM and temporal footprint, 

as was observed in Figure 4.4. Of course, since the degradations from radial undersampling 

are noise-like, the introduced degradations can experience constructive or destructive 

interference, so the relationship between temporal footprint and an objective IQM is not 

perfectly monotonic. The fluctuations in Figure 4.7 then amount to the “noise” in the SSIM 

values due to this phenomenon. The temporal footprint that this heuristic chooses then is 

simply the first temporal footprint where the SSIM is far enough away from the plateau 

that is can be distinguished from fluctuations due to this noise. 

4.4.4 Future Works and Limitations 

The clinical utility of this technique remains to be validated. The first step in 

accomplishing this would be exploring whether Figure 4.4 and Figure 4.5a and b are 

reproducible in clinical data. These two are required because in order for the heuristic to 

work, the image quality must reach a plateau at large temporal footprints and the 𝐾𝑡𝑟𝑎𝑛𝑠 

must be overestimated due to low temporal resolution in 𝐶𝑡 and the AIF. The next steps 

would be demonstrating the superiority of the 𝐾𝑡𝑟𝑎𝑛𝑠 maps generated from this technique 
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compared to existing techniques. In this case, statistically superior would be defined as 

more accurate diagnoses when the radiologists had access to the DCE scan and associated 

𝐾𝑡𝑟𝑎𝑛𝑠 maps from this technique than when provided traditional DCE data. Beyond this, 

𝐾𝑡𝑟𝑎𝑛𝑠 maps can be a valuable input for deep learning based segmentation algorithms [78]. 

This is another potential application of this heuristic. However, it has also recently been 

shown by Lee et al. [79] that some information may be lost when the DCE images reduced 

to 𝐾𝑡𝑟𝑎𝑛𝑠 maps and that more accurate segmentation can be achieved using just DCE 

images alone compared to just 𝐾𝑡𝑟𝑎𝑛𝑠 maps alone, which calls into question the future of 

PK modelling of DCE data. However, more accurate segmentation was not found when 

other contrasts such as T2 weighted images and DWI were included. 

While there are aspects of this study that required it to be done in simulations, such as 

the requirement to know the ground truth of 𝐾𝑡𝑟𝑎𝑛𝑠 exactly, this also results in some 

limitations to the potential applicability of the results. First, the imaging parameters such 

as flip angle, TR, and 𝑇10 were known exactly. This may have provided additional accuracy 

as these can be a source of error when converting between 𝑆(𝑡) and 𝐶𝑡(𝑡) [80]. Second, 

the Tofts model itself is only an approximation of the temporal dynamics of contrast agents 

in tissues. In these simulations, 𝐶𝑡(𝑡) was calculated with and then fit to the Tofts model. 

This removes any assumptions of the Tofts model such as linear intercompartmental flux 

of the contrast agent or time invariance of the PK parameters. This also adds additional 

accuracy to the simulations. Finally, even when using the simulated AIF, it and 𝐶𝑡(𝑡) are 

perfectly in sync, which is not realistic in practice, providing another potential source of 

accuracy. 
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4.5 Conclusions 

The results presented in this chapter demonstrate a useful application of IQMs for 

golden angle stack-of-stars sampling with sliding window reconstruction MRI. The IQMs 

were calculated with a reference generated from the simulated data demonstrating that this 

technique could be applied in a clinical setting when no ground truth reference is known a 

priori. Using a heuristic based on the observation that the IQMs reach a plateau at large 

temporal footprints, the IQMs were used to guide the choice of temporal footprint in DCE-

MRI to balance the requirements of temporal resolution and image quality to recover 

𝐾𝑡𝑟𝑎𝑛𝑠 values within +/-10% of the true values of the simulated features. These results 

were achieved under various conditions including different simulated bases, with noise, 

and with multiple overlap factors. While successfully implemented in simulations, this 

technique has yet to be prospectively applied to clinical data and compared to standard 

clinical practice. This technique could provide a precise tool to allow for temporal footprint 

optimization in DCE MRI on an individual patient level. 

  



91 

 

Chapter 5: Conclusions 

In this thesis, it was first explored how to properly quantify MR image quality for 

clinical utility and then a technique was developed and presented that use the quantitative 

measures of image quality in an advanced image reconstruction algorithm. This was 

performed in two separate studies. In the first study, the correlations between radiologists 

scores of MR image quality and 10 objective IQMs were measured. This was done with a 

specific focus on RMSE and SSIM, which are the two most popular metrics in the field of 

MRI. This was done because we hypothesized that other IQMs may demonstrate a higher 

correlation with the radiologists scores than these two IQMs and so may be a more 

appropriate metric when quantifying MR image quality in a research study. It was found 

that SSIM had the lowest SROCC with the radiologists score of the 10 IQMs included in 

the study when all images and radiologists scores were combined. RMSE tied for 7th 

highest SROCC. These results may have important implication in future MR reconstruction 

studies. SSIM is often used with or as opposed to RMSE because it was assumed that SSIM 

was a more accurate measure of image quality than RMSE, however the results presented 

here to not support that hypothesis. Another important observation made during this study 

was that it appeared as if the most important factor that affected an IQMs performance was 

how uniformly the IQM scored images of different degradation types that were deemed to 

be of equal quality by the radiologist. For instance, VIF, which had the highest SROCC in 

the combined data group, showed little variation in its score based on degradation type. 

However, with RMSE and SSIM, the scores of images of different degradation types are 

clearly discernible when plotted against radiologists score. Finally, it was found that some 

of the IQMs with the highest SROCCs (such as VIF, FSIM, and NQM) also had a longer 
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computation time than RMSE and SSIM, which may be an issue for adoption if the IQM 

must be calculated for a large number of images. GMSD was found to offer a good trade-

off between high correlation and low computational time, with the fourth highest SROCC 

and the third lowest computation time.  

In the second study, IQMs were proposed as a tool that can address the issue of finding 

a balance in the trade-off between image quality and temporal resolution in DCE MRI. 

DCE scans with golden angle stack-of-stars sampling with sliding window reconstruction 

were performed in numerical simulations on a numerical phantom with known 𝐾𝑡𝑟𝑎𝑛𝑠 

values. This allowed the relationships between properties of the reconstructed images such 

as 𝐾𝑡𝑟𝑎𝑛𝑠, image quality, and temporal footprint size to be explored. A reference can be 

generated from the stack-of-stars data by reconstructing an image from a large number of 

rays. This allows for the use of full-reference IQMs like RMSE and SSIM. Within the 

stack-of-stars framework it was found that the IQMs reach a plateau for temporal footprints 

greater than approximately 8 seconds. It was also found that with both a population and 

simulated AIF, 𝐾𝑡𝑟𝑎𝑛𝑠 was systemically overestimated for large temporal footprints, but as 

the temporal footprint decreased there was a region of stability where the error of the 

recovered 𝐾𝑡𝑟𝑎𝑛𝑠 is minimized. The 𝐾𝑡𝑟𝑎𝑛𝑠 overestimation and the IQM plateau occurs 

over the same range of temporal footprints. In practice the ground truth 𝐾𝑡𝑟𝑎𝑛𝑠 is not 

known, but the IQMs can be calculated. Thus, a heuristic was developed for finding the 

temporal footprint before the IQM plateau, which is located in the region of stability for 

𝐾𝑡𝑟𝑎𝑛𝑠 measurement. This heuristic was applied with the numerical phantom and synthetic 

dynamic clinical data and it was able to recover 𝐾𝑡𝑟𝑎𝑛𝑠 within 10% of its value for a range 
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of physiologically relevant values. This technique potentially allows for optimization of 

temporal resolution in a DCE MRI scan on a patient-by-patient basis. 

There are numerous avenues of research that could follow this work. For the first study, 

only images from the abdomen and brain were included. This means that the results may 

not be generalizable to other areas of the body such as musculoskeletal or cardiovascular 

images. Provided sufficient resources, expansion to these other areas would be useful for 

researchers working with these types of images. In this study, only full-reference IQMs 

were studied. While this was chosen because the study was focusing on how objective 

IQMs are used in MR reconstruction studies, no-reference IQMs could play an important 

role in clinical MRI, for example for the assessment of scan quality immediately following 

the scan. Correctly used, these could help reduce patient recall by detecting low quality 

scans while the patient is still in the scanner. A similar study to the one presented here with 

no-reference IQMs could help determine which of these metrics would be appropriate for 

this task. An important next step is determining the relationship between IQM score and 

lesion visibility for images presenting lesions. While there would be a relationship between 

diagnostic image quality as defined here and the visibility of a lesion, the two are not 

necessarily equivalent. A threshold for visibility (e.g. if SSIM > 0.9, lesion is visible 95% 

of time) would be a valuable diagnostic tool. For the second study, a natural next step is 

the expansion to clinical data. If the technique can be validated in a clinical setting it can 

be compared to standard of care DCE scans to test for statistical differences in diagnostic 

ability for a radiologist or a machine learning algorithm.  
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